• 제목/요약/키워드: Clustering coefficient

검색결과 197건 처리시간 0.03초

한국의 기술혁신 연구자 관계구조 분석 : 사회네트워크 관점 (Coauthorship Analysis of Innovation Studies in Korea : A Social Network Perspective)

  • 남수현;설성수
    • 기술혁신학회지
    • /
    • 제10권4호
    • /
    • pp.605-628
    • /
    • 2007
  • 본 논문은 사회네트워크분석 방법론을 이용하여 연구자간의 관계구조를 분석한 것이다. 분석대상은 기술혁신 분야의 두 학술저널인 ${\ulcorner}$기술혁신연구(JTI)와 ${\ulcorner}$기술혁신학회지(KTIS)${\lrcorner}$ 에 발표된 모든 논문의 저자들이다. 우리나라의 기술혁신 연구자 네트워크인 KTIS와 JTI의 일반적 특성은 네트워크의 분절화가 심하여 링크 밀도가 낮으나 KTIS는 네트워크의 중심에 131명의 연구자 그룹으로 형성된 큰 컴포넌트를 형성하고 있어 공동연구망이 견실하다. 연구분야별로는 기술정책분야가 가장 낮고, KTIS의 기술경영분야의 밀도가 가장 높게 나타났다. 또한 연구자의 소속을 대학과 대학외로 나누어 분석한 결과, 두 그룹의 평균 링크 수에 대한 차이는 통계적 유의성이 없었다. 구조적 틈새와 클러스터링계수의 피인용횟수에 대한 설명력은 구조적 틈새는 유효하나 클러스터링계수는 유의하지 않아 기존의 경영정보 분야에 대한 연구와 동일한 결과를 보였다.

  • PDF

정수생태계의 지형적인 요인 변화와 윤충류 출현 종 수 및 개체군 밀도 변동에 대한 연구 (Time Series Patterns and Clustering of Rotifer Community in Relation with Topographical Characteristics in Lentic Ecosystems)

  • 오혜지;허유지;장광현;김현우
    • 생태와환경
    • /
    • 제54권4호
    • /
    • pp.390-397
    • /
    • 2021
  • 본 연구에서는 호소의 환경 특성 및 시간에 따른 동물 플랑크톤 윤충류 군집 변동 특성을 분석하기 위해, 전라남도에 위치하여 유사한 기상 조건을 가지나 규모와 수질 환경이 서로 다른 29개 호소를 선정, 2008년부터 2016년까지 분기별 윤충류 출현 개체수 및 종 수의 시계열 자료를 수집하였다. 조사기간 중 각 호소의 윤충류 출현 개체수 및 종 수의 범위, 이상치 및 변동계수(CV)를 비교하였으며, 동적 시간 워핑(dtw) 분석을 통해 각 호소의 윤충류 군집 시계열 경향을 비교하여 유사 정도를 바탕으로 분류(clustering)하고, 주성분 분석을 통해 분류된 호소의 환경 특성과의 관계를 분석하였다. 윤충류 개체수에서 보다 빈번한 이상치 출현과 높은 변동성을 보인 호소에는 상대적으로 저수용량이 적은 소규모 호소가 많았던 반면, 출현종 수에서는 뚜렷한 경향이 관찰되지 않았다. 타 호소들과 윤충류 개체수의 시간적 변동 경향이 상이하게 나타난 일부 호소들에서 화학적 산소 요구량(COD)과 양의 상관관계를, 식물플랑크톤 현존량 변동 및 지각류 상대풍부도 변동과 음의 상관관계를 갖는 것으로 나타나 윤충류 출현 개체수의 시계열 경향에 영향을 미치는 잠재적인 요인으로 분석되었다.

CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계 (Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method)

  • 진용탁;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제25권1호
    • /
    • pp.91-96
    • /
    • 2015
  • 본 연구는 조명변화에 강인한 CT 전처리 기법 기반 개선된 얼굴인식 시스템을 소개한다. 전처리 알고리즘으로 CT알고리즘은 조명이 없는 환경에서도 얼굴의 지역적인 특징만을 추출한다. 얼굴의 지역적인 특징 추출을 가능하게 해준다. 처리된 데이터는 $(2D)^2$ 기반 대표적인 차원축소 알고리즘인 PCA를 사용하여 특징을 추출하였다. 전처리 알고리즘을 통한 특징 데이터는 제안한 방사형 기저함수 신경회로망의 입력으로 사용하였다. 방사형 기저함수 신경회로망의 은닉층은 FCM으로 구성하였고, 연결가중치는 1차 선형식을 사용하였다. 또한 ABC 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉 입력의 수, 퍼지 클러스터링의 퍼지화 계수를 최적화 한다. 본 연구는 제안된 시스템의 성능 평가를 위해 Yale Face database B와 CMU PIE database로 실험하였다.

"비급천금요방(備急千金要方)" 침구편(鍼灸篇)으로 구성한 경혈(經穴) 네트워크에 공간적 위치 변수가 미치는 영향 (Spatial Influence on Acupoints Network Derived from the Chapter on Acupuncture & Moxibustion in "Beijiqianjinyaofang")

  • 김민욱;양승범;안성훈;손인철;김재효
    • Korean Journal of Acupuncture
    • /
    • 제29권3호
    • /
    • pp.431-440
    • /
    • 2012
  • Objectives : Recently, network science is very popular topic in various scientific fields and many studies have reported that it gives meaningful results on studying characteristics of a complex system. In this study, based on network theory, we made acupoints network using data of combined acupoints which appeared at "Beijiqianjinyaofang". We focused to find out the distinctive roles of remote and local combinations on the network. Furthermore, we aimed to identify the possibility of numerical and quantitative application to acupuncture researches. Methods : Based on examples of combined acupoints in "Beijiqianjinyaofang", the network consisted of 291 nodes and 2,431 links. The spatial distances between combined acupoints were calculated by the human dummy model. We removed the links step by step for the three cases - remote, local, and random cases, and observed the characteristic changes by calculating path lengths, similarity indices, and clustering coefficients. Also cluster analysis was carried out. Results : The network had a small number of remote links, and a large number of local links. These two links had the distinct characteristics. Whereas the local links formed a cluster of nearby nodes, remote links played a role to increase the correlation between the clusters. Conclusions : These results suggest that acupoints network increases the connectivity between the distal part and the trunk of human body, and enables various combinations of the acupoints. This finding conclusively showed that mechanism of combined acupoints could be interpreted meaningfully by applying network theory in acupuncture researches.

반자연 소나무 숲에 있어서의 Ordination 미분류 및 인근 효과 ( 경쟁 ) 에 대하여 (On Ordination, Clustering and Neighbourhood Effects in the Semi-natural Pine Stands in Central Korea)

  • Oh, Kye-Chil;Lee, Kun-Seop
    • The Korean Journal of Ecology
    • /
    • 제12권2호
    • /
    • pp.83-108
    • /
    • 1989
  • To discern general tendency in relatively pure even-aged pine stands, to group the stands and to perceive neighbourhood effects a total of 39 sites of pine stand was surveyed from nearby Seoul (12 sites), Chunsung, Kangwon (13 sites) and Sosan, Chungnam (14 sites), for herb and shrub species 32, 19; 37, 19 and 41, 14 in the respective areas from September 1987 to July 1988. In terms of detrended correspondence analysis (DECORANA), the stands were subjected to ordinate with 16 physical variables and the vegetational variables. The resource ratio (N:P, N:K, P:K) as physical variables also was tried out in the DECORANA as well as independent variable (N.P.K). The outcome did not show any meaningful difference. It is suggested that there seems to be no apparent interaction among the elements in the study. Three vertical vegetation componeent, that is, tree layer, shrub layer, herb layer were subjccted to DECORANA independently, pairwisely and as a whole (a total 7 combinations). Of those analysis herb layer trial alone seems to indicate relatively clearer differences among the physical variables. In the stands nearby Seoul first axis indicated soil field capacity and exchangeable cations (K, Ca and Na) and second axis did not show any tendency. For the Chunsung stands first axis also revealed soil field capcity and amount of arganic matter and second axis showed amount of exchangeable cation (K, Ca and Na), In the Seosan 1st axis indicated pH and exchangeable cations (K, Ca and Na). For the 39 sites 4 clusters in terms of herb layer might be defined: Peucedanum terebinthaceum-Cymbopogon tortilis-Polygala japonica-Festuca ovina (1); Atractylodes japonica-Patrina scabiosaefolia (2); Potentilla fragarioides-Atractylodes (3); and Cymbopogon tortilis (4). In the neighbourhood effects study in terms of the basal area distribution, Thiessen polygon area and Gini coefficient for the Pinus thunbergii stands of Seosan the Thiessen polygon area approach seems to indicate earlier (30 years old) neighbourhood effect than the others (45 years).

  • PDF

Design of Robust Face Recognition System Realized with the Aid of Automatic Pose Estimation-based Classification and Preprocessing Networks Structure

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2388-2398
    • /
    • 2017
  • In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.

한국영화 100선에 등장하는 영화배우 네트워크 확장 패턴 분석 (Analysis of Extension Pattern for Network of Movie Stars from Korea Movies 100)

  • 류제운;김학용
    • 한국콘텐츠학회논문지
    • /
    • 제10권7호
    • /
    • pp.420-428
    • /
    • 2010
  • 복잡계 과학의 발달에 따라 많은 사회 네트워크들이 분석되어 지고 있다. 우리는 사회 네트워크의 하나로 한국영화 100선을 중심으로 한국 영화배우 네트워크를 구축하고 분석하였다. 현재까지 연결선수, 중간성(betweenness), 결집계수 등 링크수를 중심으로 네트워크의 구조를 분석하는 방향으로 진행되어지고 있다. 하지만 이제는 네트워크의 구조적 분석에서 멈추는 것이 아니라, 나아가 k-core 분석법 등을 이용하여 복잡한 네트워크 속에서 핵심 되는 중심 모듈을 찾아 분석하는 정보 분석 방향으로 진행되어야 할 것이다. 본 논문은 한국 영화 데이터베이스에서 제공하는 한국영화 100선에 출연하는 영화배우 네트워크를 만들어 가중치 유무에 따른 핵심 모듈 분석과 네트워크가 시기별로 확장되어 가는 양상을 분석하였다. 이는 네트워크의 확장 또는 진화를 이해하는 모델을 위한 기초 자료로 활용될 것으로 기대한다.

산업용 CT 볼륨데이터에서 템플릿 매칭을 통한 이물질 자동 검출 (Automatic Detection of Foreign Body through Template Matching in Industrial CT Volume Data)

  • 지혜림;홍헬렌
    • 한국멀티미디어학회논문지
    • /
    • 제16권12호
    • /
    • pp.1376-1384
    • /
    • 2013
  • 본 논문에서는 산업용 CT 볼륨데이터에서 템플릿 매칭을 통하여 제품의 이물질을 자동 검출하는 기법을 제안한다. 제안방법은 다음과 같은 세 단계로 이루어진다. 첫째, 다운 샘플링 데이터에서 잡음제거 후 제품을 배경과 분리하고, 영상의 평균값 및 표준편차를 이용하여 초기 이물질 후보를 추출한 후, K-평균 클러스터링을 이용하여 이물질 후보를 추출한다. 둘째, 템플릿 매칭을 이용하여 제품과 유사도가 다른 이물질을 검출한다. 이 때, 검출하고자 하는 이물질의 크기에 따라 밝기값평균차이(SSD)와 조인트 엔트로피를 이용한 유사도 평가를 통하여 이물질을 검출한다. 셋째, 원 볼륨데이터에서 이물질 검출률을 개선하기 위하여 여과기법으로 제품의 이물질을 최종 검출한다. 본 제안 방법의 결과를 평가하기 위해 산업용 CT 볼륨데이터와 시뮬레이션 데이터를 사용하여 육안평가, 정확성 평가와 수행시간 측정을 수행하였다. 정확성 평가를 위하여 기존 밝기값 기반 검출 기법을 비교방법으로 사용하고, 다이스 계수 유사도를 측정하였다.

대표 속성을 이용한 최적 연관 이웃 마이닝 (Optimal Associative Neighborhood Mining using Representative Attribute)

  • 정경용
    • 전자공학회논문지CI
    • /
    • 제43권4호
    • /
    • pp.50-57
    • /
    • 2006
  • 최근 정보 기술의 발전에 따라 다양하고 폭넓은 정보들이 디지털 형태로 빠르게 생산 및 배포되고 있다. 사용자가 이러한 정보과잉 속에서 자신이 원하는 정보를 단시간 내에 검색하는 것은 그리 쉬운 일이 아니다. 따라서 유비쿼터스 상거래에서 사용자가 정보를 효율적으로 이용할 수 있도록 제어하고 필터링하는 일을 도와주는 개인화된 추천 시스템이 등장하였으며, 더 나아가 사용자가 원하는 아이템을 예측하고 추천해주고 있으며 이를 위해 협력적 필터링을 적용하고 있다. 이는 사용자의 성향에 맞는 아이템을 예측하고 추천하기 위하여 비슷한 선호도를 가지는 사용자들간의 유사도 가중치를 계산한다. 본 연구는 정보의 속성에 대한 사용자의 선호도를 고려하지 않은 문제를 개선하기 위하여 연관 이웃 마이닝을 사용하여 대표속성에 대한 연관 사용자의 선호도를 협력적 필터링에 반영하였다. 연관 이웃 마이닝은 선호도에 가장 크게 영향을 미치는 속성을 추출하여 유사한 성향을 가진 연관 사용자를 군집한다. 제안된 방법은 사용자가 아이템에 대해서 평가한 MovieLens 데이터 집합을 대상으로 평가되었으며, 기존의 nearest neighbor model과 K-means 군집보다 그 성능이 우수함을 보인다.

온라인 소셜 네트워크에서 구조적 파라미터를 위한 확산 모델 (Propagation Models for Structural Parameters in Online Social Networks)

  • 공종환;김익균;한명묵
    • 인터넷정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.125-134
    • /
    • 2014
  • 단순한 소통 미디어였던 소셜 미디어가 최근에는 트위터, 페이스북을 중심으로 활성화되면서 소셜 네트워크 서비스의 활용 및 중요성이 점차 커지고 있다. 기업들은 소셜 네트워크의 빠른 정보 확산 능력을 통해 마케팅에 적극 활용하고 있지만, 정보 확산 능력이 커지면서 이에 대한 역기능 또한 증가하고 있다. 소셜 네트워크는 사용자들의 친분 및 관계를 기반으로 형성되고 소통하기 때문에 스팸, 악성코드 유포에 대한 효과 및 확산 속도가 매우 빠르다. 이에 본 논문에서는 소셜 네트워크 환경에서 악성 데이터 확산에 영향을 미치는 파라미터들을 도출하고, XSS Worm과 Koobface Worm의 확산 실험을 통해 각각의 파라미터들의 확산 능력을 비교 분석한다. 또한, 소셜 네트워크 환경에서의 구조적 특징을 고려하여 정보 확산에 영향을 미치는 파라미터에 기반 한 악성 데이터 확산 모델을 제안한다. 본 논문이 제안하는 방법의 실험을 위해 역학 모델인 SI 모델을 기반으로 BA모델과 HK모델을 구성하여 실험을 진행하고, 실험의 결과로 XSS Worm과 Koobface Worm의 확산에 영향을 미치는 파라미터는 군집도와 근접 중심성임을 확인할 수 있었다.