DOI QR코드

DOI QR Code

Analysis of Extension Pattern for Network of Movie Stars from Korea Movies 100

한국영화 100선에 등장하는 영화배우 네트워크 확장 패턴 분석

  • 류제운 (충북대학교 자연과학대학 생화학과) ;
  • 김학용 (충북대학교 자연과학대학 생화학과)
  • Received : 2010.02.24
  • Accepted : 2010.06.30
  • Published : 2010.07.28

Abstract

The advancement of the Science for complex systems enables the analysis of many social networks. We constructed and analyzed a Korean movie star network as one of social networks, based on the 100 Korean movie selection for a main data source. Until now, the research trend has been the structural analysis of network, focused on link numbers, such as degree, betweenness and clustering coefficient. But it is time that the research is not limited by the structural analysis of networks only. Rather, the research goal should be aimed to an information analysis, performed by identifying and analyzing central modules that are regarded as the core of complex networks, using k-core analysis method. In this research, we constructed a network of movie stars who have appeared in 100 Korean movie selection, provided by Korean movie database, also we analyzed its core modules with and without weights, and the trend of seasonal expansion of the network. We expect our findings can be used as the basic data applicable to a model for understanding of the expansion and evolution of networks.

복잡계 과학의 발달에 따라 많은 사회 네트워크들이 분석되어 지고 있다. 우리는 사회 네트워크의 하나로 한국영화 100선을 중심으로 한국 영화배우 네트워크를 구축하고 분석하였다. 현재까지 연결선수, 중간성(betweenness), 결집계수 등 링크수를 중심으로 네트워크의 구조를 분석하는 방향으로 진행되어지고 있다. 하지만 이제는 네트워크의 구조적 분석에서 멈추는 것이 아니라, 나아가 k-core 분석법 등을 이용하여 복잡한 네트워크 속에서 핵심 되는 중심 모듈을 찾아 분석하는 정보 분석 방향으로 진행되어야 할 것이다. 본 논문은 한국 영화 데이터베이스에서 제공하는 한국영화 100선에 출연하는 영화배우 네트워크를 만들어 가중치 유무에 따른 핵심 모듈 분석과 네트워크가 시기별로 확장되어 가는 양상을 분석하였다. 이는 네트워크의 확장 또는 진화를 이해하는 모델을 위한 기초 자료로 활용될 것으로 기대한다.

Keywords

References

  1. S. Milgram, "The small world problem," Psychology Today, Vol.1, No.1, pp.60-67, 1967.
  2. R. Solomonoff and A. Rapoport, "Connectivity of random nets," Bull. Math. Biophys., Vol.13, No.1 pp.107-117, 1951. https://doi.org/10.1007/BF02478357
  3. P. Erdös and A. Renyi, "On random graphs," Publicat. Math., Vol.6, No.2 pp.290-297, 1959.
  4. R. Albert, H. Jeong, and A.-L. Barabasi, "Internet: Diameter of the world-wide web," Nature, Vol.401, No.6749, pp.130-131, 1999. https://doi.org/10.1038/43601
  5. H. Jeong, S. P. Mason, A.-L. Barabasi, and Z.N. Oltvai, "Lethality and centrality in protein networks," Nature, Vol.411, No.6833, pp.41-42, 2001. https://doi.org/10.1038/35075138
  6. H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabasi, "The large-scale organization of metabolic networks," Nature, Vol.407, No.6804, pp.651-654, 2000. https://doi.org/10.1038/35036627
  7. J. Stiller, D. Nettle, and R. Dunbar, "The small world of Shakespeare's plays," Human Nature, Vol.14, No.4, pp.397-408. https://doi.org/10.1007/s12110-003-1013-1
  8. S. Kim, "Complex network analysis in literature: Togi,“ Sae Mulli, Vol.50, No.4, pp.267-271, 2005.
  9. Y. K. Lee, H. I. Shin, J. E. Ku, and H. Y. Kim, "Analysis of network dynamics from the Romance of the three kingdoms," J. Kor. Conten. Assoc., Vol.9, No.4, pp.364-371, 2009. https://doi.org/10.5392/JKCA.2009.9.4.364
  10. D. Liben-Nowell and J. Kleinberg, "Tracing information flow on a global scale using internet chain-letter data," PNAS, Vol.105, No.12, pp.4633-4638. https://doi.org/10.1073/pnas.0708471105
  11. A.-L. Barabasi and R. Albert, "Emergence of scaling in random networks," Science, Vol.286, No.5439, pp.509-512, 1999. https://doi.org/10.1126/science.286.5439.509
  12. B. Kang, K.-I. Goh, D.-S. Lee, and D. Kim, "Complex networks: structure and dynamics," Sae Mulli, Vol.48, No.2, pp.115-141, 2004.
  13. A. Clauset, C. Moore, and M. Newman, "Hierarchical structure and the prediction of missing links in networks," Nature, Vol.453, No.7191, pp.98-191, 2008. https://doi.org/10.1038/nature06830
  14. J. Ignacio, A. Hamelin, L. Dall'Asta, A. Barrat, and A. Vespignani, "K-core decomposition of internet graphs: Hierarchies, self-similarity and measurement biases," Networks Hetero. Media, Vol.3, No.2, pp.371-393, 2008. https://doi.org/10.3934/nhm.2008.3.371
  15. S. Jansom and M. J. Luczak, "A simple solution to the k-core problem," Random Structures & Algorithms, Vol.30, No.1-2. pp.50-62, 2007. https://doi.org/10.1002/rsa.20147
  16. S. Srivastava and R. K. Ghosh, "Distributed algorithms for finding and maintaining a k-tree core in a dynamic network," Information processing Letters, Vol.88, No.4, pp.187-194, 2003. https://doi.org/10.1016/S0020-0190(03)00365-X
  17. http://www.kmdb.or.kr
  18. J. P. Onnela, J. Saramaki, J. Hyvönen, G. Szabo, M. A. de. Menezes, K. Kaski, A.-L. Barabasi, and J. Kertesz, “Analysis of a large-scale weighted network of one-to-one human communication,” New J. Phys., Vol.9 No.6, p.179, 2007. https://doi.org/10.1088/1367-2630/9/6/179
  19. M. E. J. Newman and J. Park, "Why social networks are different from other types of networks," Phys. Tev. E, Vol.68, p.036122, 2003. https://doi.org/10.1103/PhysRevE.68.036122
  20. R. Albert and A.-L. Barabási, "Statistical mechanics of complex network," Rev. Mod. Phys., Vol.74, No.1, pp.47-97, 2002. https://doi.org/10.1103/RevModPhys.74.47
  21. D. S. Callaway, J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman, and S. H. Strogatz, "Are randomly grown graphs really random?" Phys. Rev. E, Vol.64, No.10, p.041902, 2001. https://doi.org/10.1103/PhysRevE.64.041902
  22. A.-L. Barabasi, R. Albert, and H. Jeong, “Mean-field thoery for scale-free random networks," Physica A, Vol.272, No7. pp.173-187, 1999. https://doi.org/10.1016/S0378-4371(99)00291-5

Cited by

  1. Analysis of Network Dynamics from Annals of the Chosun Dynasty vol.14, pp.9, 2014, https://doi.org/10.5392/JKCA.2014.14.09.529