• Title/Summary/Keyword: Cluster-based schemes

Search Result 82, Processing Time 0.028 seconds

A Reliable Cluster based Dynamic Authentication Mechanism in MANET (이동 애드혹 네트워크에서 신뢰성 있는 클러스터 기반 동적 인증 기법)

  • Hwang, Yoon-Cheol;Kim, Jin-Il
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.661-672
    • /
    • 2008
  • Mobile Ad-hoc NETwork is a kind of self-controlled network composed only of mobile hosts. Since its range of use is gradually expanding into various sections applicable to practical lives, active researches are being conducted on it. However, as it depends on cooperation of nodes composing the entire network, due to weakness of wireless link and lack of its central infrastructure, so it is exposed to more serious risk than general network in security. Therefore, this paper proposes Cluster-Based Dynamic Authentication that enables only reliable nodes to participate in communication, by solving lack of centralized infrastructure, using hierarchical Mobile Ad hoc NETwork structure based on cluster, and by complementing security weakness through mutual authentication between hierarchical nodes. Simulation shows that the proposed scheme can complement security weakness of Mobile Ad hoc NETwork and that it is more adequate in reliability and expandability than the existing schemes.

  • PDF

A Cluster-based Efficient Key Management Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 클러스터 기반의 효율적 키 관리 프로토콜)

  • Jeong, Yoon-Su;Hwang, Yoon-Cheol;Lee, Keon-Myung;Lee, Sang-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.2
    • /
    • pp.131-138
    • /
    • 2006
  • To achieve security in wireless sensor networks(WSN), it is important to be able to encrypt and authenticate messages sent among sensor nodes. Due to resource constraints, many key agreement schemes used in general networks such as Diffie-Hellman and public-key based schemes are not suitable for wireless sensor networks. The current pre-distribution of secret keys uses q-composite random key and it randomly allocates keys. But there exists high probability not to be public-key among sensor nodes and it is not efficient to find public-key because of the problem for time and energy consumption. To remove problems in pre-distribution of secret keys, we propose a new cryptographic key management protocol, which is based on the clustering scheme but does not depend on probabilistic key. The protocol can increase efficiency to manage keys because, before distributing keys in bootstrap, using public-key shared among nodes can remove processes to send or to receive key among sensors. Also, to find outcompromised nodes safely on network, it selves safety problem by applying a function of lightweight attack-detection mechanism.

A Group Key Management Scheme for WSN Based on Lagrange Interpolation Polynomial Characteristic

  • Wang, Xiaogang;Shi, Weiren;Liu, Dan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3690-3713
    • /
    • 2019
  • According to the main group key management schemes logical key hierarchy (LKH), exclusion basis systems (EBS) and other group key schemes are limited in network structure, collusion attack, high energy consumption, and the single point of failure, this paper presents a group key management scheme for wireless sensor networks based on Lagrange interpolation polynomial characteristic (AGKMS). That Chinese remainder theorem is turned into a Lagrange interpolation polynomial based on the function property of Chinese remainder theorem firstly. And then the base station (BS) generates a Lagrange interpolation polynomial function f(x) and turns it to be a mix-function f(x)' based on the key information m(i) of node i. In the end, node i can obtain the group key K by receiving the message f(m(i))' from the cluster head node j. The analysis results of safety performance show that AGKMS has good network security, key independence, anti-capture, low storage cost, low computation cost, and good scalability.

An Energy Efficient Cluster-Based Local Multi-hop Routing Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 클러스터 기반 지역 멀티홉 라우팅 프로토콜)

  • Kim, Kyung-Tae;Youn, Hee-Yong
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.495-504
    • /
    • 2009
  • Wireless sensor networks (WSN) consisting of a largenumber of sensors aims to gather data in a variety of environments and is beingused and applied in many different fields. The sensor nodes composing a sensornetwork operate on battery of limited power and as a result, high energyefficiency and long network lifetime are major goals of research in the WSN. Inthis paper we propose a novel cluster-based local multi-hop routing protocolthat enhances the overall energy efficiency and guarantees reliability in thesystem. The proposed protocol minimizes energy consumption for datatransmission among sensor nodes by forming a multi-hop in the cluster.Moreover, through local cluster head rotation scheme, it efficiently manageswaste of energy caused by frequent formation of clusters which was an issue inthe existing methods. Simulation results show that our scheme enhances energyefficiency and ensure longer network time in the sensor network as comparedwith existing schemes such as LEACH, LEACH-C and PEACH.

A Sensing-aware Cluster Head Selection Algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 센싱 인지 클러스터 헤드 선택 알고리즘)

  • Jung Eui-Eyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.141-150
    • /
    • 2005
  • Wireless Sensor Networks have been rapidly developed due to the advances of sensor technology and are expected to be applied to various applications in many fields. In Wireless Sensor Networks, schemes for managing the network energy-efficiently are most important. For this purpose, there have been a variety of researches to suggest routing protocols. However, existing researches have ideal assumption that all sensor nodes have sensing data to transmit. In this paper, we designed and implemented a sensing-aware cluster selection algorithm based on LEACH-C for the sensor network in which part of sensors have sensing data. We also simulated proposed algorithm on several network situation and analyzed which situation is suitable for the algorithm. By the simulation result, selecting cluster head among the sensing nodes is most energy-efficient and the result shows application of sensing-awareness in cluster head selection when not all sensors have sensing data.

  • PDF

Group-based Cache Sharing Scheme Considering Peer Connectivity in Mobile P2P Networks (모바일 P2P 네트워크에서 피어의 연결성을 고려한 그룹 기반 캐시 공유 기법)

  • Kim, Jaegu;Yoon, Sooyong;Lim, Jongtae;Lee, Seokhee;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.10
    • /
    • pp.20-31
    • /
    • 2014
  • Recently, cache sharing methods have been studied in order to effectively reply to user requests in mobile P2P networks. In this paper, we propose a cache sharing scheme based on a cluster considering the peer connectivity in mobile P2P networks. The proposed scheme shares caches by making a cluster that consists of peers preserving the connectivity among them for a long time. The proposed scheme reduces data duplication to efficiently use the cache space in a cluster. The cache space is divided into two parts with a data cache and a temporary cache for a cache space. It is possible to reduce the delay time when the cluster topology is changed or the cache data is replaced utilizing a temporary cache. The proposed scheme checks the caches of peers in a route to a cluster header and the caches of one-hop peers in order to reduce the communication cost. It is shown through performance evaluation that the proposed scheme outperforms the existing schemes.

A Method for Constructing Multi-Hop Routing Tree among Cluster Heads in Wireless Sensor Networks (무선 센서 네트워크에서 클러스터 헤드의 멀티 홉 라우팅 트리 구성)

  • Choi, Hyekyeong;Kang, Sang Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.763-770
    • /
    • 2014
  • In traditional routing protocols including LEACH for wireless sensor networks, nodes suffer from unbalanced energy consumption because the nodes require large transmission energy as the distance to the sink node increase. Multi-hop based routing protocols have been studied to address this problem. In existing protocols, each cluster head usually chooses the closest head as a relay node. We propose LEACH-CHT, in which cluster heads choose the path with least energy consumption to send data to the sink node. In our research, each hop, a cluster head selects the least cost path to the sink node. This method solves the looping problem efficiently as well as make it possible that a cluster head excludes other cluster heads placed farther than its location from the path, without additional energy consumption. By balancing the energy consumption among the nodes, our proposed scheme outperforms existing multi-hop schemes by up to 36% in terms of average network lifetime.

Separated Dual-layering Routing Scheme (SDRS) for Hierarchical Wireless Sensor Networks (계층형 무선센서네트워크를 위한 분리된 이중화 라우팅)

  • Choi, Hae-Won;Kim, Kyung-Jun;Kim, Hyun-Sung
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.551-558
    • /
    • 2009
  • Most of clustering schemes focusing on the energy efficiency have only a cluster head in each cluster, thus the energy consumption of cluster head in a cluster can rapidly increase. To reduce the energy consumption, recently, the dual-layered clustering which is separated a cluster ranges into two parts, i.e., data aggregation layer and data transmission layer, based on a sensor equipped with geographical positioning system (GPS), was proposed. However, the logical regions existing within the dual-layered clustering range can not distinguish efficiently. This scheme leads to many messages collision and transmission delay among member nodes. In this paper, to solve these problems, we propose a separated dual-layered routing scheme using the position information and the cluster radius. Proposed scheme clearly distinguish the dual-layered clustering range and gets the balanced number of member nodes in each cluster. Therefore, the proposed routing scheme could prolong the overall network life time about 10% compared to the previous two layered clustering scheme and LEACH.

  • PDF

Use of Word Clustering to Improve Emotion Recognition from Short Text

  • Yuan, Shuai;Huang, Huan;Wu, Linjing
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.103-110
    • /
    • 2016
  • Emotion recognition is an important component of affective computing, and is significant in the implementation of natural and friendly human-computer interaction. An effective approach to recognizing emotion from text is based on a machine learning technique, which deals with emotion recognition as a classification problem. However, in emotion recognition, the texts involved are usually very short, leaving a very large, sparse feature space, which decreases the performance of emotion classification. This paper proposes to resolve the problem of feature sparseness, and largely improve the emotion recognition performance from short texts by doing the following: representing short texts with word cluster features, offering a novel word clustering algorithm, and using a new feature weighting scheme. Emotion classification experiments were performed with different features and weighting schemes on a publicly available dataset. The experimental results suggest that the word cluster features and the proposed weighting scheme can partly resolve problems with feature sparseness and emotion recognition performance.

A GTS-based Sensor Data Gathering under a Powerful Beam Structure (파워 빔 구조에서 GTS 기반 센서 데이터 수집 방안)

  • Lee, Kil Hung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • This paper proposes an architecture of a sensor network for gathering data under a powerful beam cluster tree architecture. This architecture is used when there is a need to gather data from sensor node where there is no sink node connected to an existing network, or it is required to get a series of data specific to an event or time. The transmit distance of the beam signal is longer than that of the usual sensor node. The nodes of the network make a tree network when receiving a beam message transmitting from the powerful root node. All sensor nodes in a sink tree network synchronize to the superframe and know exactly the sequence value of the current superframe. When there is data to send to the sink node, the sensor node sends data at the corresponding allocated channel. Data sending schemes under the guaranteed time slot are tested and the delay and jitter performance is explained.