• Title/Summary/Keyword: Cluster density

Search Result 532, Processing Time 0.026 seconds

The Analysis and Classification of Urban Types for Potential Damage from Hazardous Chemical Accidents Using Factor and Cluster Analysis (요인 및 군집분석을 이용한 유해화학물질 사고 잠재적 피해에 대한 도시 유형 분류 및 특성 분석)

  • Lee, Seung Hoon;Ryu, Young Eun;Kim, Kyu Ri;Back, Jong In;Kim, Ho-Hyun;Ban, Yong Un
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.726-734
    • /
    • 2020
  • Objectives: The aim of this study was to analyze and classify the characteristics of potential damage from hazardous chemical accidents in 229 administrative units in South Korea by reflecting the social and environmental characteristics of areas where chemical accidents can occur. Methods: A number of indicators were selected through preceding studies. Factor analysis was performed on selected indicators to derive factors, and cluster analysis was performed based on the factor scores. Results: As a result of the cluster analysis, 229 administrative units were divided into three clusters, and it was confirmed that each cluster had its own characteristics. Conclusions: The first cluster, "areas at risk of accident occurrence and spread of damage" was a type with a high potential for accident damage and a high density of hazardous facilities. The second cluster, "Urban infrastructure damage hazard areas" appeared to be a cluster with high urban development characteristics. Finally, the third cluster 'Urban and environmental damage hazard areas' appeared to be a cluster with an excellent natural environment. This study went further from the qualitative discussion related to existing chemical accidents to identify and respond to accident damage by reflecting the social and environmental characteristics of the region. Distinct from the previous studies related to the causes of accidents and the response system, it is meaningful to conduct empirical research focusing on the affected areas by analyzing the possibility of accident damage in reflection of the social and environmental characteristics of the community.

A Combination Capture-Recapture and Line Transect Model in Clustered Population

  • Choi, Jin-Sik;Pyong, Nam-Kung
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.729-748
    • /
    • 1999
  • In this paper we present combined estimator of capture-recapture and line transect model using bivariate detection function and detection probability according to objects being in cluster population. Here bivariate detection function use distance and cluster size. The simulation shows that combined estimator approaches the more true value the larger size parameter. Therefore this estimator using the bivariate detection function is more efficient in estimate the population size and density by size parameter.

  • PDF

Comparative studies of density functionals in modelling hydrogen bonding energetics of acrylamide dimers

  • Lin, Yi-De;Wang, Yi-Siang;Chao, Sheng D.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.369-376
    • /
    • 2017
  • Intermolecular interaction energies and conformer geometries of the hydrogen bonded acrylamide dimers have been studied by using the second-order Møller-Plesset (MP2) perturbation theory and the density functional theory (DFT) with 17 density functionals. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) have been used to study the basis set effects. The DFT calculated interaction energies are compared to the reference energy data calculated by the MP2 method and the coupled cluster method at the complete basis set (CCSD(T)/CBS) limit in order to determine the relative performance of the studied density functionals. Overall, dispersion-energy-corrected density functionals outperform uncorrected ones. The ${\omega}B97XD$ density functional is particularly effective in terms of both accuracy and computational cost in estimating the reference energy values using small basis sets and is highly recommended for similar calculations for larger systems.

THE QUEST FOR COSMIC RAY PROTONS IN GALAXY CLUSTERS

  • PFROMMER C.;ENSSLIN T. A.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.455-460
    • /
    • 2004
  • There have been many speculations about the presence of cosmic ray protons (CRps) in galaxy clusters over the past two decades. However, no direct evidence such as the characteristic $\gamma$-ray signature of decaying pions has been found so far. These pions would be a direct tracer of hadronic CRp interactions with the ambient thermal gas also yielding observable synchrotron and inverse Compton emission by additionally produced secondary electrons. The obvious question concerns the type of galaxy clusters most likely to yield a signal: Particularly suited sites should be cluster cooling cores due to their high gas and magnetic energy densities. We studied a nearby sample of clusters evincing cooling cores in order to place stringent limits on the cluster CRp population by using non-detections of EGRET. In this context, we examined the possibility of a hadronic origin of Coma-sized radio halos as well as radio mini-halos. Especially for mini-halos, strong clues are provided by the very plausible small amount of required CRp energy density and a matching radio profile. Introducing the hadronic minimum energy criterion, we show that the energetically favored CRp energy density is constrained to $2\%{\pm}1\%$ of the thermal energy density in Perseus. We also studied the CRp population within the cooling core region of Virgo using the TeV $\gamma$-ray detection of M 87 by HEGRA. Both the expected radial $\gamma$-ray profile and the required amount of CRp support this hadronic scenario.

Electronic and Magnetic Structure Calculations of Cubane-type Mn4 Cluster (Cubane-type Mn4 클러스터의 전자구조 및 자기구조 계산)

  • Park, Key-Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.4
    • /
    • pp.121-124
    • /
    • 2012
  • We have studied electronic and magnetic structure of cubane-type Mn4 cluster using OpenMX method based on density functional method. The calculated density of states shows that the octahedron of O atoms split $e_g$ and $t_{2g}$ energy levels like bulk MnO with cubic structure. Total energy with antiferromagnetic spin configuration is lower than those of other spin configurations because of super exchange interaction. Calculated exchange interaction J between Mn atoms with anti-parallel spin is larger than between Mn atoms with parallel spin.

The impact of ram pressure on the multi-phase ism probed by the TIGRESS simulation

  • Choi, Woorak;Kim, Chang-Goo;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.33.1-33.1
    • /
    • 2018
  • Ram pressure stripping by intracluster medium (ICM) can play a crucial role in galaxy evolution in the high-density environment as seen by many examples of cluster galaxies. Although much progress has been made by direct numerical simulations of galaxies (or a galaxy) as a whole in a cluster environment, the interstellar medium (ISM) in galactic disks is not well resolved to understand responses of the ISM in details. In order to overcome this, we utilize the TIGRESS simulation suite that focuses on a local region of galactic disks and resolves key physical processes in the ISM with uniformly high resolution. In this talk, we present the results from the solar neighborhood TIGRESS model facing the ICM winds with a range of ram pressures. When ram pressure is weaker than and comparable to the ISM weight, the ICM winds simply reshape the ISM to the one-sided disk, but star formation rates remain unchanged. Although there exist low-density channels in the multiphase ISM that allow the ICM winds to penetrate through, the ISM turbulence quickly closes the channels and prevents efficient stripping. When ram pressure is stronger than the ISM weight, a significant amount of the ISM can be stripped away rapidly, and star formation is quickly quenched. While the low-density gas is stripped rapidly, star formation still occurs in the extraplanar dense ISM (1-2kpc away from the stellar disk). Finally, we quantify the momentum transfer from the ICM to the ISM using the mass-and momentum-weighted velocity distribution functions of each gas phase.

  • PDF

3D Object Detection with Low-Density 4D Imaging Radar PCD Data Clustering and Voxel Feature Extraction for Each Cluster (4D 이미징 레이더의 저밀도 PCD 데이터 군집화와 각 군집에 복셀 특징 추출 기법을 적용한 3D 객체 인식 기법)

  • Cha-Young, Oh;Soon-Jae, Gwon;Hyun-Jung, Jung;Gu-Min, Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.471-476
    • /
    • 2022
  • In this paper, we propose an object detection using a 4D imaging radar, which developed to solve the problems of weak cameras and LiDAR in bad weather. When data are measured and collected through a 4D imaging radar, the density of point cloud data is low compared to LiDAR data. A technique for clustering objects and extracting the features of objects through voxels in the cluster is proposed using the characteristics of wide distances between objects due to low density. Furthermore, we propose an object detection using the extracted features.

Energy Efficient Cluster Event Detection Scheme using MBP in Wireless Sensor Networks (센서 네트워크에서 최소 경계 다각형을 이용한 에너지 효율적인 군집 이벤트 탐지 기법)

  • Kwon, Hyun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.12
    • /
    • pp.101-108
    • /
    • 2010
  • Many works on energy-efficient cluster event detection schemes have been done considering the energy restriction of sensor networks. The existing cluster event detection schemes transmit only the boundary information of detected cluster event nodes to the base station. However, If the range of the cluster event is widened and the distribution density of sensor nodes is high, the existing cluster event detection schemes need high transmission costs due to the increase of sensor nodes located in the event boundary. In this paper, we propose an energy-efficient cluster event detection scheme using the minimum boundary polygons (MBP) that can compress and summarize the information of event boundary nodes. The proposed scheme represents the boundary information of cluster events using the MBP creation technique in the large scale of sensor network environments. In order to show the superiority of the proposed scheme, we compare it with the existing scheme through the performance evaluation. Simulation results show that our scheme maintains about 92% accuracy and decreases about 80% in energy consumption to detect the cluster event over the existing schemes on average.

Observational Evidence of Merging and Accretion in the Milky Way Galaxy from the Spatial Distribution of Stars in Globular Clusters

  • Chun, Sang-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.76-76
    • /
    • 2013
  • The current hierarchical model of galaxy formation predicts that galaxy halos contain merger relics in the form of long stellar streams. In order to find stellar substructures in galaxy, we focused our investigation on the stellar spatial density around globular clusters and on the quantitative properties of the evolved sequences in the color-magnitude diagrams (CMDs). First, we investigated the spatial configuration of stars around five metal-poor globular clusters in halo region (M15, M30, M53, NGC 5053, and NGC 5466) and one metal-poor globular cluster in bulge region (NGC 6626). Our findings indicate that all of these globular clusters show strong evidence of extratidal features in the form of extended tidal tails around the clusters. The orientations of the extratidal features show the signatures of tidal tails tracing the clusters' orbits and the effects of dynamical interactions with the galaxy. These features were also confirmed by the radial surface density profiles and azimuthal number density profiles. Our results suggest that these six globular clusters are potentially associated with the satellite galaxies merged into the Milky Way. Second, we derived the morphological parameters of the red giant branch (RGB) from the near-infrared CMDs of 12 metal-poor globular clusters in the Galactic bulge. The photometric RGB shape indices such as colors at fixed magnitudes, magnitudes at fixed colors, and the RGB slope were measured for each cluster. The magnitudes of the RGB bump and tip were also estimated. The derived RGB parameters were used to examine the overall behavior of the RGB morphology as a function of cluster metallicity. The behavior of the RGB shape parameters was also compared with the previous observational calibration relation and theoretical predictions of the Yonsei-Yale isochrones. Our results of studies for stellar spatial distribution around globular clusters and the morphological properties of RGB stars in globular clusters could add further observational evidence of merging scenario of galaxy formation.

  • PDF

Vibrational Analysis and Intermolecular Hydrogen Bonding of Azodicarbonamide in the Pentamer Cluster

  • Lee, Choong-Keun;Park, Sun-Kyung;Min, Kyung-Chul;Kim, Yun-Soo;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1951-1959
    • /
    • 2008
  • Pentamer cluster of azodicarbonamide (ADA) based on the crystalline structure was investigated for the equilibrium structure, the stabilization energies, and the vibrational properties at various levels of the density functional theory. Stretching force constants of N${\cdot}{\cdot}{\cdot}$H or O${\cdot}{\cdot}{\cdot}$H, and angle-bending force constants of N-H${\cdot}{\cdot}{\cdot}$N or N-H${\cdot}{\cdot}{\cdot}$O for intermolecular hydrogen bonds in the pentamer cluster were obtained in 0.2-0.5 mdyn/$\AA$ and 1.6-2.0 mdyn$\AA$, respectively. The geometry of central ADA molecule fully hydrogen bonded with other four molecules shows good coincidence to the crystalline structure except the bond distances of N-H. Calculated Raman and infrared spectra of central ADA molecule in cluster represent well the experimental spectra of ADA obtained in the solid state compared to a single molecule. Detailed structural and vibrational properties of central ADA molecule in the pentamer cluster are presented.