• Title/Summary/Keyword: Cluster Partition

Search Result 67, Processing Time 0.028 seconds

On Generating Backbone Based on Energy and Connectivity for WSNs (무선 센서네트워크에서 노드의 에너지와 연결성을 고려한 클러스터 기반의 백본 생성 알고리즘)

  • Shin, In-Young;Kim, Moon-Seong;Choo, Hyun-Seung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.41-47
    • /
    • 2009
  • Routing through a backbone, which is responsible for performing and managing multipoint communication, reduces the communication overhead and overall energy consumption in wireless sensor networks. However, the backbone nodes will need extra functionality and therefore consume more energy compared to the other nodes. The power consumption imbalance among sensor nodes may cause a network partition and failures where the transmission from some sensors to the sink node could be blocked. Hence optimal construction of the backbone is one of the pivotal problems in sensor network applications and can drastically affect the network's communication energy dissipation. In this paper a distributed algorithm is proposed to generate backbone trees through robust multi-hop clusters in wireless sensor networks. The main objective is to form a properly designed backbone through multi-hop clusters by considering energy level and degree of each node. Our improved cluster head selection method ensures that energy is consumed evenly among the nodes in the network, thereby increasing the network lifetime. Comprehensive computer simulations have indicated that the newly proposed scheme gives approximately 10.36% and 24.05% improvements in the performances related to the residual energy level and the degree of the cluster heads respectively and also prolongs the network lifetime.

  • PDF

A Cluster-based Power-Efficient Routing Protocol for Sensor Networks (센서 네트워크를 위한 클러스터 기반의 에너지 효율적인 라우팅 프로토콜)

  • Kweon, Ki-Suk;Lee, Seung-Hak;Yun, Hyun-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.1
    • /
    • pp.76-90
    • /
    • 2006
  • Sensor network consists of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it. The life time of each node in the sensor network significantly affects the life time of whole sensor network. A node which drained out its battery may incur the partition of whole network in some network topology The life time of each node depends on the battery capacity of each node. Therefore if all sensor nodes in the network live evenly long, the life time of the network will be longer. In this paper, we propose Cluster-Based Power-Efficient Routing (CBPER) Protocol which provides scalable and efficient data delivery to multiple mobile sinks. Previous r(luting protocols, such as Directed Diffusion and TTDD, need to flood many control packets to support multiple mobile sinks and many sources, causing nodes to consume their battery. In CBPER, we use the fact that sensor nodes are stationary and location-aware to construct and maintain the permanent grid structure, which makes nodes live longer by reducing the number of the flooding control packets. We have evaluated CBPER performance with TTDD. Our results show that CBPER is more power-efficient routing protocol than TTDD.

Region Decision Using Modified ICM Method (변형된 ICM 방식에 의한 영역판별)

  • Hwang Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.5 s.311
    • /
    • pp.37-44
    • /
    • 2006
  • In this paper, a new version of the ICM method(MICM, modified ICM) in which the contextual information is modelled by Markov random fields (MRF) is introduced. To extract the feature, a new local MRF model with a fitting block neighbourhood is proposed. This model selects contextual information not only from the relative intensity levels but also from the geometrically directional position of neighbouring cliques. Feature extraction depends on each block's contribution to the local variance. They discriminates it into several regions, for example context and background. Boundaries between these regions are also distinctive. The proposed algerian performs segmentation using directional block fitting procedure which confines merging to spatially adjacent elements and generates a partition such that pixels in unified cluster have a homogeneous intensity level. From experiment with ink rubbed copy images(Takbon, 拓本), this method is determined to be quite effective for feature identification. In particular, the new algorithm preserves the details of the images well without over- and under-smoothing problem occurring in general iterated conditional modes (ICM). And also, it may be noted that this method is applicable to the handwriting recognition.

High-Dimensional Image Indexing based on Adaptive Partitioning ana Vector Approximation (적응 분할과 벡터 근사에 기반한 고차원 이미지 색인 기법)

  • Cha, Gwang-Ho;Jeong, Jin-Wan
    • Journal of KIISE:Databases
    • /
    • v.29 no.2
    • /
    • pp.128-137
    • /
    • 2002
  • In this paper, we propose the LPC+-file for efficient indexing of high-dimensional image data. With the proliferation of multimedia data, there Is an increasing need to support the indexing and retrieval of high-dimensional image data. Recently, the LPC-file (5) that based on vector approximation has been developed for indexing high-dimensional data. The LPC-file gives good performance especially when the dataset is uniformly distributed. However, compared with for the uniformly distributed dataset, its performance degrades when the dataset is clustered. We improve the performance of the LPC-file for the strongly clustered image dataset. The basic idea is to adaptively partition the data space to find subspaces with high-density clusters and to assign more bits to them than others to increase the discriminatory power of the approximation of vectors. The total number of bits used to represent vector approximations is rather less than that of the LPC-file since the partitioned cells in the LPC+-file share the bits. An empirical evaluation shows that the LPC+-file results in significant performance improvements for real image data sets which are strongly clustered.

Integrating physics-based fragility for hierarchical spectral clustering for resilience assessment of power distribution systems under extreme winds

  • Jintao Zhang;Wei Zhang;William Hughes;Amvrossios C. Bagtzoglou
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Widespread damages from extreme winds have attracted lots of attentions of the resilience assessment of power distribution systems. With many related environmental parameters as well as numerous power infrastructure components, such as poles and wires, the increased challenge of power asset management before, during and after extreme events have to be addressed to prevent possible cascading failures in the power distribution system. Many extreme winds from weather events, such as hurricanes, generate widespread damages in multiple areas such as the economy, social security, and infrastructure management. The livelihoods of residents in the impaired areas are devastated largely due to the paucity of vital utilities, such as electricity. To address the challenge of power grid asset management, power system clustering is needed to partition a complex power system into several stable clusters to prevent the cascading failure from happening. Traditionally, system clustering uses the Binary Decision Diagram (BDD) to derive the clustering result, which is time-consuming and inefficient. Meanwhile, the previous studies considering the weather hazards did not include any detailed weather-related meteorologic parameters which is not appropriate as the heterogeneity of the parameters could largely affect the system performance. Therefore, a fragility-based network hierarchical spectral clustering method is proposed. In the present paper, the fragility curve and surfaces for a power distribution subsystem are obtained first. The fragility of the subsystem under typical failure mechanisms is calculated as a function of wind speed and pole characteristic dimension (diameter or span length). Secondly, the proposed fragility-based hierarchical spectral clustering method (F-HSC) integrates the physics-based fragility analysis into Hierarchical Spectral Clustering (HSC) technique from graph theory to achieve the clustering result for the power distribution system under extreme weather events. From the results of vulnerability analysis, it could be seen that the system performance after clustering is better than before clustering. With the F-HSC method, the impact of the extreme weather events could be considered with topology to cluster different power distribution systems to prevent the system from experiencing power blackouts.

Facial Expression Control of 3D Avatar by Hierarchical Visualization of Motion Data (모션 데이터의 계층적 가시화에 의한 3차원 아바타의 표정 제어)

  • Kim, Sung-Ho;Jung, Moon-Ryul
    • The KIPS Transactions:PartA
    • /
    • v.11A no.4
    • /
    • pp.277-284
    • /
    • 2004
  • This paper presents a facial expression control method of 3D avatar that enables the user to select a sequence of facial frames from the facial expression space, whose level of details the user can select hierarchically. Our system creates the facial expression spare from about 2,400 captured facial frames. But because there are too many facial expressions to select from, the user faces difficulty in navigating the space. So, we visualize the space hierarchically. To partition the space into a hierarchy of subspaces, we use fuzzy clustering. In the beginning, the system creates about 11 clusters from the space of 2,400 facial expressions. The cluster centers are displayed on 2D screen and are used as candidate key frames for key frame animation. When the user zooms in (zoom is discrete), it means that the user wants to see mort details. So, the system creates more clusters for the new level of zoom-in. Every time the level of zoom-in increases, the system doubles the number of clusters. The user selects new key frames along the navigation path of the previous level. At the maximum zoom-in, the user completes facial expression control specification. At the maximum, the user can go back to previous level by zooming out, and update the navigation path. We let users use the system to control facial expression of 3D avatar, and evaluate the system based on the results.

Hierarchical Visualization of the Space of Facial Expressions (얼굴 표정공간의 계층적 가시화)

  • Kim Sung-Ho;Jung Moon-Ryul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.12
    • /
    • pp.726-734
    • /
    • 2004
  • This paper presents a facial animation method that enables the user to select a sequence of facial frames from the facial expression space, whose level of details the user can select hierarchically Our system creates the facial expression space from about 2400 captured facial frames. To represent the state of each expression, we use the distance matrix that represents the distance between pairs of feature points on the face. The shortest trajectories are found by dynamic programming. The space of facial expressions is multidimensional. To navigate this space, we visualize the space of expressions in 2D space by using the multidimensional scaling(MDS). But because there are too many facial expressions to select from, the user faces difficulty in navigating the space. So, we visualize the space hierarchically. To partition the space into a hierarchy of subspaces, we use fuzzy clustering. In the beginning, the system creates about 10 clusters from the space of 2400 facial expressions. Every tine the level increases, the system doubles the number of clusters. The cluster centers are displayed on 2D screen and are used as candidate key frames for key frame animation. The user selects new key frames along the navigation path of the previous level. At the maximum level, the user completes key frame specification. We let animators use the system to create example animations, and evaluate the system based on the results.