• 제목/요약/키워드: Cluster Computing

검색결과 429건 처리시간 0.034초

클러스터링과 특성분석을 이용한 구간 데이터에서 다차원 연관 규칙 마이닝 (Mining of Multi-dimensional Association Rules over Interval Data using Clustering and Characterization)

  • 임승환;권용석;김상욱
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권1호
    • /
    • pp.60-64
    • /
    • 2010
  • 비 트랜잭션 데이터를 대상으로 연관 규칙을 도출하기 위해서, 데이터의 속성들을 구간화하는 기법들이 활발하게 연구되었다. 이러한 기존의 연구들은 구간화 단계에서 구간 범위의 변화에 따른 연관 규칙의 신뢰도 변화를 반영하지 않고, 구간화 단계와 연관 규칙을 도출하는 단계들을 독립적으로 수행하였다. 이로 인해 속성들의 구간이 부적절하게 설정되고, 이 결과 높은 신뢰도를 갖는 연관 규칙들이 최종 결과에서 누락된다. 따라서 본 논문에서는 속성들을 구간화하는 단계와 연관 규칙들을 도출하는 단계를 병합하여 동시에 수행함으로써, 가장 신뢰도가 높은 연관규칙들을 도출할 수 있는 구간을 설정하는 방안을 제안한다. 이를 위해서 연관 규칙의 우변의 속성들을 대상으로 계층적 클러스터링을 수행하고, 각 클러스터들에 대해서 특성 분석을 수행한다. 실험 결과, 제안하는 기법은 기존의 기법들에 비해서 높은 신뢰도를 갖는 연관 규칙들을 발견하는 것으로 나타났다.

안드로이드 환경의 다중생체인식 기술을 응용한 인증 성능 개선 연구 (Enhancement of Authentication Performance based on Multimodal Biometrics for Android Platform)

  • 최성필;정강훈;문현준
    • 한국멀티미디어학회논문지
    • /
    • 제16권3호
    • /
    • pp.302-308
    • /
    • 2013
  • 본 논문은 모바일 환경에서의 다중생체인식을 통한 개인인증 시나리오에서 false acceptance rate (FAR)가 향상된 시스템을 제안한다. 다중생체인식을 위하여 얼굴인식과 화자인식을 선택하였으며, 시스템의 인식 시나리오는 다음을 따른다. 얼굴인식을 위하여 Modified census transform (MCT) 기반의 얼굴검출과 k-means 클러스터 분석 (cluster analysis) 알고리즘 기반의 눈 검출을 통해 얼굴영역 전처리를 수행하고, principal component analysis (PCA) 기반의 얼굴인증 시스템을 구현한다. 화자인식을 위하여 음성의 끝점추출과 Mel frequency cepstral coefficient (MFCC) 특징을 추출하고, dynamic time warping (DTW) 기반의 화자 인증 시스템을 구현한다. 그리고 각각의 생체인식을 본 논문에서 제안된 방법을 기반으로 융합하여 인식률을 향상시킨다. 본 논문의 실험은 Android 환경에서 수행하였으며, 구현한 다중생체인식 시스템과 단일생체인식 시스템과의 FAR을 비교하였다. 단일 얼굴인식의 FAR은 4.6%, 단일 화자인식의 FAR은 6.7%로 각각 나타났으며, 제안된 다중생체인식 시스템의 FAR은 1.8%로 크게 감소하였다.

Connected Data Architecture 개념의 확장을 통한 AI 서비스 초안 설계 (Draft Design of AI Services through Concept Extension of Connected Data Architecture)

  • 차병래;박선;오수열;김종원
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.30-36
    • /
    • 2018
  • DataLake 프레임워크와 같은 단일 도메인 모델은 비즈니스 시스템의 규모 확장과 대량의 다양한 데이터들이 생성되는 빅데이터 환경, 그리고 데이터를 보다 스마트하게 처리하여 효율성 및 활용도를 높일 수 있는 방법으로 주목 받고 있다. 특히, 논리적인 단일 도메인 모델은 컴퓨팅 리소스의 유한함과 공유 경제에 의한 물리적으로 분할된 멀티 사이트의 데이터 처리를 위한 네트워크, 스토리지, 그리고 컴퓨팅 자원의 효율적 운영이 매우 중요하다. 기존의 Data Lake 프레임워크의 장점들을 기반으로 다양한 영역의 멀티 사이트들을 통합 및 데이터의 라이프 사이클을 관리하기 위한 DataLake 프레임워크의 Connected Data Architecture 개념과 기능들의 확장을 통한 다양한 응용 영역에 활용 가능한 CDA 기반 AI 서비스의 초안 설계 및 시나리오를 제안하고자 한다.

빅데이터 및 고성능컴퓨팅 프레임워크를 활용한 유전체 데이터 전처리 과정의 병렬화 (Parallelization of Genome Sequence Data Pre-Processing on Big Data and HPC Framework)

  • 변은규;곽재혁;문지협
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제8권10호
    • /
    • pp.231-238
    • /
    • 2019
  • 차세대 염기 서열 분석법이 생성한 유전체 원시 데이터를 기존의 방식대로 하나의 서버에서 분석하기 위해서는 데이터 크기에 따라 수십 시간이 필요할 수 있다. 그러나 응급 환자의 진단처럼 수 시간 내에 결과를 알아야 하는 상황이 존재하기 때문에 단일 유전체 분석의 성능을 향상시킬 필요가 있다. 본 연구에서는 빅데이터 기술의 병렬화 기법과 고속의 네트워크로 연결되고 병렬파일시스템을 공유하는 고성능컴퓨팅 클러스터를 적극적으로 활용하여 분석 시간을 크게 단축시킬 수 있는 유전체 데이터 분석의 전처리 프로세스의 병렬화 방법을 제안한다. 분석 데이터의 신뢰성을 위해 기존의 검증된 분석 도구 및 알고리즘을 새로운 환경에 맞게 병렬화 하는 전략을 선택하였다. 프로세스의 병렬화, 데이터의 분배 및 병렬 병합 기법을 개발하였고 실험을 통해 성능 향상을 확인하였다.

온라인 데이터 스트림에서의 동적 부분 공간 클러스터링 기법 (Dynamic Subspace Clustering for Online Data Streams)

  • 박남훈
    • 디지털융복합연구
    • /
    • 제20권2호
    • /
    • pp.217-223
    • /
    • 2022
  • 온라인 데이터 스트림에 대한 부분 공간 클러스터링은 데이터 공간 차원의 모든 부분 집합을 검사해야 하므로 많은 양의 메모리 자원을 필요로 한다. 유한한 메모리 공간에서 데이터 스트림에 대한 클러스터들의 지속적인 변화를 추적하기 위해 본 논문에서는 메모리 자원을 효과적으로 사용하는 격자기반 부분 공간 클러스터링 알고리즘을 제안한다. n차원 데이터 스트림이 주어지면 각 차원 데이터 공간에 있는 데이터 항목의 분포 정보를 격자셀 리스트에 의해 모니터링 된다. 첫번째 레벨의 격자셀 목록에서 데이터 항목의 빈도가 높아 단위 격자셀이 되면 해당 격자셀로부터 모든 가능한 부분 공간의 클러스터를 찾기 위해 다음 레벨의 격자셀 리스트를 자식 노드로 생성한다. 이와 같이 최대 다차원 n레벨의 격자셀 부분 공간 트리가 구성되고, k차원의 부분 공간 클러스터는 부분 공간 격자셀 트리의 k레벨에서 찾을 수 있다. 실험을 통해서 제안하는 방법이 기존 방법만큼 정확도를 유지하면서, 밀집 공간만 확장하여 컴퓨팅 자원을 보다 효율적으로 사용하는 것을 확인하였다.

<흥부전> 이본의 내용 유형에 따른 군집 분석 연구 (Cluster Analysis Study based on Content Types of <Heungbu-jeon> versions)

  • 최운호;김동건
    • Journal of Platform Technology
    • /
    • 제11권5호
    • /
    • pp.23-36
    • /
    • 2023
  • 이 연구는 내용 분석 기법과 해밍 거리 측정 방법을 적용하여 <흥부전> 이본의 계열과 계통을 미시적, 거시적으로 분석하는 것을 목적으로 한다. <흥부전>의 28개 이본을 내용 단락으로 분절하고 각 단락마다 내용 유형에 따라 내용 유형의 값을 인코딩하여서, 모든 이본의 유형 차이를 비교하였다. 28개 이본의 내용 단락 유형에 따른 차이를 종합하여서 이본의 친소 관계를 분석하기 위하여 거리 행렬로 변환하였다. 거리 행렬은 차원 축소 기법의 일종인 다차원 척도법을 적용하였고 그 결과 거리 행렬을 2차원 공간으로 축소하여 2차원 좌표를 구하였다. 다차원 척도법 분석 결과를 시각화하여서 흥부전 이본은 크게 2가지 계통으로 구분이 된다는 것을 확인하였다. 동일한 거리 행렬을 활용하여 28개 이본의 친소 관계 군집을 분석하기 위한 방법으로는 계층적 군집 분석과 계통분기분석방법을 적용하였다. 그 결과 2개의 이본 계통은 친소 관계의 미시적 분석 결과에 따라 5개의 계열이 존재하는 것을 확인하였다. 이 연구에서는 디지털 인문학 연구 방법을 적용하여 고전 문학 이본의 내용을 인코딩하고 그 데이터를 분석하는 방법을 적용하여 문헌의 내용 유사도에 따른 군집 분석 기법이 유용함을 보여주었다.

  • PDF

리눅스 기반 U.K. 지구시스템모형을 이용한 동아시아 SO2 배출에 따른 기상장 변화 (Changes in Meteorological Variables by SO2 Emissions over East Asia using a Linux-based U.K. Earth System Model)

  • 윤대옥;송형규;이조한
    • 한국지구과학회지
    • /
    • 제43권1호
    • /
    • pp.60-76
    • /
    • 2022
  • 본 연구는 기상청에서 운용 중인 영국 the United Kingdom Earth System Model (UKESM)을 리눅스 클러스터에 설치하여 과거 28년 기간에 대해 적분을 수행하고, 추가적인 수치 실험을 수행하여 얻은 결과와 비교한다. 설치한 UKESM은 저해상도 버전이지만, 대류권 대기 화학-에어로졸 과정과 성층권 오존 화학 과정을 동시에 모의하는 United Kingdom Chemistry and Aerosol (UKCA) 모듈을 포함하고 있는 최신 버전이다. 본 연구에 사용된 UKCA가 포함된 UKESM (UKESM-UKCA)은 전체 대기에서의 화학, 에어로졸, 구름, 복사 과정이 연동된 모델이다. CMIP5 기존 배출량 자료를 사용하는 UKESM 기준 적분 수치 모의와 함께, 동아시아 지역 이산화황(SO2) 배출이 기상장에 미치는 영향을 평가하기 위하여 CMIP5 SO2 배출량 대신 최신의 REAS 배출자료로 교체한 실험 적분 수치 모의를 수행하였다. 두 수치 모의의 기간은 모두 1982년 1월 1일부터 2009년 12월 31일까지 총 28년이며, 모델 결과는 동아시아 지역 에어로졸 광학 두께, 2-m 온도, 강수 강도의 시간 평균값과 시간 변화 경향의 공간 분포를 분석하고 관측자료와 비교하였다. 모델에서 얻어진 온도와 강수 강도의 공간 분포 패턴은 관측자료와 전반적으로 유사하였다. 또한 UKESM에서 모의된 오존 농도와 오존전량의 공간 분포도 위성 관측 자료와 분포 패턴이 일치하였다. 두 UKESM 실험 적분 모의 결과로 얻어진 온도와 강수 강도의 선형 변화 경향의 비교를 통해, 동아시아 지역 SO2 지면 배출은 서태평양과 중국 북부지역에 대한 온도와 강수량의 변화 경향에 중요한 요인임을 확인할 수 있었다. 본 연구를 통해 슈퍼컴퓨터에서만 운용되던 UKESM이 리눅스 클러스터 컴퓨팅 환경에도 설치되어 운용이 가능하다는 점을 제시한다. 대기 환경 및 탄소순환을 연구하는 다양한 분야의 연구자들에게도 대기-해양-지면-해빙이 상호작용하는 UKESM와 같은 지구시스템모델이 활용될 가능성과 접근성이 높아졌다.

온라인 공간에서 비정상 정보 유포 기법의 시간에 따른 변화 분석 (Temporal Analysis of Opinion Manipulation Tactics in Online Communities)

  • 이시형
    • 인터넷정보학회논문지
    • /
    • 제21권3호
    • /
    • pp.29-39
    • /
    • 2020
  • 인터넷 포털 사이트와 사회 관계망 서비스 등의 온라인 공간(online communities)은 시간과 공간의 제약 없이 접속 가능하다는 장점 때문에 많은 사용자들이 의견을 교환하고 정보를 얻기 위해 사용하고 있다. 이와 함께 특정 개인이나 집단의 이익을 위해 의도적으로 유포하는 비정상 정보도 증가하고 있는데 허위 상품 평이나 정치적 선동 의견이 이에 해당한다. 기존에는 이러한 비정상 정보 탐지를 위해 한 시점에서의 비정상 정보를 수집하고 특징을 분석하여 검열 시스템을 제안하였다. 그러나 비정상 정보를 유포하는 기법은 기존의 탐지 시스템을 회피하고 보다 효율적으로 정보를 전파하기 위해 지속적으로 변화하므로 탐지 시스템도 이에 맞추어 변화할 필요가 있다. 따라서 본 논문에서는 비정상 정보 유포 기법의 시간에 따른 변화를 관찰하는 시스템을 제시한다. 이 시스템은 클러스터링(clustering)을 활용해 비정상 정보를 유포 방식에 따라 군집(cluster)으로 분류하며 이러한 군집의 변화를 분석하여 유포 방식의 변화를 추적한다. 제안한 시스템을 검증하기 위해 3번의 선거 기간 전후에 포털 사이트에서 수집된 백만 개 이상의 의견을 대상으로 실험하였으며, 그 결과 비정상 정보 게재에 자주 사용되는 시간, 추천수 조작 방법, 다수의 ID 활용 방법 등에 대한 변화를 관찰할 수 있었다. 이 시스템을 주기적으로 사용해 탐지 시스템을 개선한다면 보다 빠르고 정확하게 비정상 정보의 유포를 탐지할 수 있을 것이다.

이산 프레셰 거리 척도를 이용한 궤적 유사도 고속계산 휴리스틱 알고리즘 (Fast Heuristic Algorithm for Similarity of Trajectories Using Discrete Fréchet Distance Measure)

  • 박진관;김태용;박보국;조환규
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권4호
    • /
    • pp.189-194
    • /
    • 2016
  • 궤적은 이동체가 움직인 경로이다. IT 기술의 성장은 GPS와 같은 위치 측정 장치를 통해 다양한 이동체의 궤적 데이터를 수집할 수 있게 하였다. 이동체의 궤적은 지리정보시스템(GIS)을 포함한 다양한 연구 분야에서 사용된다. 지리정보시스템 분야에서는 차량의 궤적 데이터를 이용한 전자 도로 지도생성 시도가 많이 이루어져왔다. 이 목표를 이루기 위해서는 같은 도로 상의 궤적들을 모으는 방법이 필요하다. 흔히 프레셰 거리($Fr{\acute{e}}chet$ distance)가 궤적 쌍의 거리를 측정하는데 사용된다. 하지만 프레셰 거리는 대량의 궤적들에 대해서는 계산 시간의 소모가 심하다. 본 논문에서는 궤적들의 인접성 여부를 이산프레셰 거리를 통해 빠르게 구분하는 휴리스틱 알고리즘을 제안한다. 이 알고리즘은 계산되는 거리의 정확도를 낮추는 대신 계산 속도를 높였다. 실험 결과, 제안 방법은 이산 프레셰 거리 대비 95%의 정확도와 최하 65%의 계산 감소율로 거리가 10m 이내인 궤적들을 구분할 수 있었다.

도로 네트워크를 따른 교통사고 핫스팟의 시각화 (A Visualization of Traffic Accidents Hotspot along the Road Network)

  • 조나혜;전철민;강영옥
    • 지적과 국토정보
    • /
    • 제48권1호
    • /
    • pp.201-213
    • /
    • 2018
  • 최근 우리나라의 경우 교통사고 예방활동으로 자동차 보유에 따른 교통사고 발생건수는 지속적으로 감소하고 있지만, 서울의 경우 다른 지역에 비해 자동차 1만대 대비 사고 건수는 전국에서 광주와 함께 가장 높게 나타나고 있다. 인적 재난인 교통사고를 예방하기 위한 다양한 연구들이 진행되어 왔다. 특히 교통사고에 대한 공간적 분석을 연구한 초기 연구들은 교통사고 클러스터 지역을 확인하기 위해 행정구역 별 교통사고 건수를 집계하거나, 커널밀도 방법을 통해 밀도를 추정하여 분석하는 경우가 다수를 이루었다. 그러나 교통사고는 도로를 따라 발생하는 사건이기 때문에 도로상에서 교통사고 다발구간을 찾는 것이 더 의미가 있을 수 있다. 따라서 본 연구는 도로 네트워크를 따라 교통사고 집중 지역을 찾고자 하였다. 본 연구에서는 2가지 방법으로 교통사고를 가장 가까운 도로 네트워크에 할당한 뒤, Getis-Ord $Gi^*$에 의한 핫스팟 분석을 통해 교통사고 다발구간을 분석하였다. 하나는 10m 단위의 일정한 도로 링크를 중심으로 분석을 수행하였으며, 다른 하나는 도로구간별 단위 길이 당 평균 교통사고를 계산하여 교통사고 밀집구간을 분석하였다. 첫 번째 방법에 의한 분석 결과 교통사고가 집중되는 특정 도로 구간을 명확하게 확인할 수 있는 반면, 두 번째 방법에 의한 분석 결과 도로링크의 특성에 따라 교통사고 집중지역이 길게 나타나는 특징을 확인할 수 있었다. 두 방법에 의한 교통사고 다발구간이 다르게 나타나는 것을 알 수 있으며, 향후 해당 지역의 교통환경을 분석하고 개선하기 위해서는 보다 명확한 구간을 파악하는 것이 유의미할 수 있다.