Statista 통계 조사에 따르면 데이터의 규모는 매년 증가할 것으로 예상하고 빅데이터 처리 프레임워크의 관심이 높아지고 있다. 빅데이터 처리 프레임워크 Spark는 Shuffle 과정에서 노드 간 데이터 전송이 일어난다. 이때 분산 처리한 데이터를 네트워크로 전송하기 위해 객체를 바이트 스트림으로 변환하여 메모리 buffer에 담는 직렬화 작업이 필요하다. 그러나 바이트 스트림을 buffer에 담는 과정에서 바이트 스트림의 크기가 메모리 buffer보다 클 경우, 메모리 할당 과정이 추가로 발생하여 전체적이 Spark의 성능 저하로 이어질 수 있다. 이에 본 논문에서는 Spark 환경에서 분산 처리 성능 향상을 위한 직렬화 buffer 최적화 시스템을 제안한다. 제안하는 방법은 Spark Driver가 Executor에게 작업을 할당하기 전 직렬화된 데이터 크기 측정과 직렬화 옵션 설정을 통해 Executor에게 적절한 buffer를 할당할 수 있다. 향후 제안하는 방법의 검증을 위해 실제 Spark 클러스터 환경에서 성능 평가가 필요하다.
KISTI의 GPU 클러스터 시스템인 뉴론은 NVIDIA의 A100과 V100 GPU가 총 260개 탑재되어 있는 클러스터 시스템이다. 뉴론의 계산노드들은 고성능의 인터커넥트인 Infiniband(IB) 케이블로 연결되어 있어 멀티 노드 작업 수행 시에 고대역 병렬통신이 가능하다. 본 논문에서는 NVIDIA사에서 제공하는 NCCL의 벤치마크 코드를 이용하여 인터커넥트 네트워크의 통신 성능을 비교분석하는 방안에 대해서 소개한다.
Spark는 대용량의 데이터를 처리를 위해 분산된 데이터를 네트워크로 모은 다음, 데이터를 분할하는 작업인 Shuffle을 진행한다. 이때 Spark 클러스터의 어느 한 노드의 네트워크 전송 속도가 느릴 경우 병목 현상으로 인한 전체 처리 성능이 저하된다. 이에 본 논문에서는 네트워크 병목 현상을 예방하기 위한 클러스터 구성 방법을 제안한다. 본 논문에서 제안하는 노드 선택 시스템은 iperf 도구를 이용해 노드들의 대역폭을 측정하고 이에 따라 노드 선택 알고리즘을 통해 클러스터를 구성한다. 기존 Spark 클러스터와 본 논문이 제안하는 시스템으로 구성한 클러스터를 비교했을 때, 250MB 로그 파일을 제외하고 750MB 로그 파일부터는 네트워크 전송 속도가 낮은 노드를 가지고 있는 클러스터의 성능이 병목 현상으로 인해 느려졌다. 본 논문의 제안에 따라 노드들의 네트워크 전송 속도를 고려하여 클러스터를 구성하면 네트워크 전송 속도로 발생하는 병목 현상을 예방할 수 있다.
Assumption-based truth maintenance system (ATMS) is a tool that maintains the reasoning process of inference engine. It also supports non-monotonic reasoning based on dependency-directed backtracking. Bookkeeping all the reasoning processes allows it to quickly check and retract beliefs and efficiently provide solutions for problems with large search space. However, the amount of data has been exponentially grown recently, making it impossible to use a single machine for solving large-scale problems. The maintaining process for solving such problems can lead to high computation cost due to large memory overhead. To overcome this drawback, this paper presents an approach towards incrementally maintaining the reasoning process of inference engine on cluster using Spark. It maintains data dependencies such as assumption, label, environment and justification on a cluster of machines in parallel and efficiently updates changes in a large amount of inferred datasets. We deployed the proposed ATMS on a cluster with 5 machines, conducted OWL/RDFS reasoning over University benchmark data (LUBM) and evaluated our system in terms of its performance and functionalities such as assertion, explanation and retraction. In our experiments, the proposed system performed the operations in a reasonably short period of time for over 80GB inferred LUBM2000 dataset.
With rapid growth in the amount of data transferred on the Internet, traditional storage systems have reached the limits of their capacity and performance. SAN (Storage Area Network), which connects hosts to disk with the Fibre Channel switches, provides one of the powerful solutions to scale the data storage and servers. In this environment, the maintenance of data consistency among hosts is an important issue because multiple hosts share the files on disks attached to the SAN. To preserve data consistency, each host can execute the disk I/O whenever disk read and write operations are requested. However, frequent disk I/O requests cause the deterioration of the overall performance of a SAN cluster. In this paper, we introduce a SANtopia global buffer manager to improve the performance of a SAN cluster reducing the number of disk I/Os. We describe the design and algorithms of the SANtopia global buffer manager, which provides a buffer cache sharing mechanism among the hosts in the SAN cluster. Micro-benchmark results to measure the performance of block I/O operations show that the global buffer manager achieves speed-up by the factor of 1.8-12.8 compared with the existing method using disk I/O operations. Also, File system micro-benchmark results show that SANtopia file system with the global buffer manager improves performance by the factor of 1.06 in case of directories and 1.14 in case of files compared with the file system without a global buffer manager.
Journal of the Korea Institute of Information Security & Cryptology
/
v.22
no.1
/
pp.43-56
/
2012
Wireless sensor networks consist of numerous small-sized nodes equipped with limited computing power and storage as well as energy-limited disposable batteries. In this networks, nodes are deployed in a large given area and communicate with each other in short distances via wireless links. For energy efficient networks, dynamic clustering protocol is an effective technique to achieve prolonged network lifetime, scalability, and load balancing which are known as important requirements. this technique has a characteristic that sensing data which gathered by many nodes are aggregated by cluster head node. In the case of cluster head node is exposed by attacker, there is no guarantee of safe and stable network. Therefore, for secure communications in such a sensor network, it is important to be able to encrypt the messages transmitted by sensor nodes. Especially, cluster based sensor networks that are designed for energy efficient, strongly recommended suitable key management and authentication methods to guarantee optimal stability. To achieve secured network, we propose a key management scheme which is appropriate for hierarchical sensor networks. Proposed scheme is based on polynomial key pool pre-distribution scheme, and sustain a stable network through key authentication process.
The Journal of the Convergence on Culture Technology
/
v.9
no.3
/
pp.715-720
/
2023
The military is driving innovative changes such as AI, cloud computing, and drone operation through the Fourth Industrial Revolution. It is expected that such changes will lead to a rapid increase in the demand for information exchange requirements, reaching all lower-ranking soldiers, as networking based on IoT occurs. The flow of such information must ensure efficient information distribution through various infrastructures such as ground networks, stationary satellites, and low-earth orbit small communication satellites, and the demand for information exchange that is distributed through them must be appropriately dispersed. In this study, we redefined the DSCP, which is closely related to QoS (Quality of Service) in information dissemination, into 11 categories and performed research to map each cluster group identified by cluster analysis to the defense "information exchange requirement list" on a one-to-one basis. The purpose of the research is to ensure efficient information dissemination within a multi-layer integrated network (ground network, stationary satellite network, low-earth orbit small communication satellite network) with limited bandwidth by re-establishing QoS policies that prioritize important information exchange requirements so that they are routed in priority. In this paper, we evaluated how well the information exchange requirement lists classified by cluster analysis were assigned to DSCP through M&S, and confirmed that reclassifying DSCP can lead to more efficient information distribution in a network environment with limited bandwidth.
In this paper, we present the design and implementation of a large-scale qualitative spatial reasoner using Apache Spark, an in-memory high speed cluster computing environment, which is effective for sequencing and iterating component reasoning jobs. The proposed reasoner can not only check the integrity of a large-scale spatial knowledge base representing topological and directional relationships between spatial objects, but also expand the given knowledge base by deriving new facts in highly efficient ways. In general, qualitative reasoning on topological and directional relationships between spatial objects includes a number of composition operations on every possible pair of disjunctive relations. The proposed reasoner enhances computational efficiency by determining the minimal set of disjunctive relations for spatial reasoning and then reducing the size of the composition table to include only that set. Additionally, in order to improve performance, the proposed reasoner is designed to minimize disk I/Os during distributed reasoning jobs, which are performed on a Hadoop cluster system. In experiments with both artificial and real spatial knowledge bases, the proposed Spark-based spatial reasoner showed higher performance than the existing MapReduce-based one.
In parallel cluster computing systems, the efficiency of communication between computing nodes is one of important factors that decide overall system performance. Accordingly, many researchers have studied on high-performance inter-node communication. The recently launched multi-core processor, however. increases the importance of intra-node communication as well because the more the number of cores in a node, the more the number of parallel processes running in the same node. Though there have been studies on intra-node communications, these have limited considerations on the state-of-the-art systems. In this paper, we propose a Linux kernel module that minimizes the number of data copy by exploiting the memory mapping mechanism for high-performance intra-node communication. The proposed kernel module supports the Linux kernel version 2.6. The performance measurements over a multi-core system present that the proposed kernel module can achieve lower latency up to 62% and higher throughput up to 144% than an existing kernel module approach. In addition, the measurements reveal that the performance of intra-node communication can vary significantly based on whether the cores that run the communication processes are belong to the same processor package (i.e., sharing the L2 cache).
Journal of Korean Society for Geospatial Information Science
/
v.7
no.2
s.14
/
pp.123-132
/
1999
With the rapid increases of the amount of data and computing, the parallelization of the computing algorithm becomes necessary more than ever. However the parallelization had been conducted mostly in a super-computer until the rod 1990s, it was not for the general users due to the high price, the complexity of usage, and etc. A new concept for the parallel processing has been emerged in the form of K-clustering form the late 1990s, it becomes an excellent alternative for the applications need high computer power with a relative low cost although the installation and the usage are still difficult to the general users. The mapping algorithms (cut, join, resizing, warping, conversion from raster to vector and vice versa, etc) in GIS are well suited for the parallelization due to the characteristics of the data structure. If those algorithms are manipulated using PC-clustering, the result will be satisfiable in terms of cost and performance since they are processed in real flu with a low cos4 In this paper the tools and the libraries for the parallel processing and PC-clustering we introduced and how those tools and libraries are applied to mapping algorithms in GIS are showed. Parallel programs are developed for the mapping algorithms and the result of the experiments shows that the performance in most algorithms increases almost linearly according to the number of node.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.