• Title/Summary/Keyword: Cloud-based

Search Result 2,684, Processing Time 0.026 seconds

Real-Time GPU Task Monitoring and Node List Management Techniques for Container Deployment in a Cluster-Based Container Environment (클러스터 기반 컨테이너 환경에서 실시간 GPU 작업 모니터링 및 컨테이너 배치를 위한 노드 리스트 관리기법)

  • Jihun, Kang;Joon-Min, Gil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.11
    • /
    • pp.381-394
    • /
    • 2022
  • Recently, due to the personalization and customization of data, Internet-based services have increased requirements for real-time processing, such as real-time AI inference and data analysis, which must be handled immediately according to the user's situation or requirement. Real-time tasks have a set deadline from the start of each task to the return of the results, and the guarantee of the deadline is directly linked to the quality of the services. However, traditional container systems are limited in operating real-time tasks because they do not provide the ability to allocate and manage deadlines for tasks executed in containers. In addition, tasks such as AI inference and data analysis basically utilize graphical processing units (GPU), which typically have performance impacts on each other because performance isolation is not provided between containers. And the resource usage of the node alone cannot determine the deadline guarantee rate of each container or whether to deploy a new real-time container. In this paper, we propose a monitoring technique for tracking and managing the execution status of deadlines and real-time GPU tasks in containers to support real-time processing of GPU tasks running on containers, and a node list management technique for container placement on appropriate nodes to ensure deadlines. Furthermore, we demonstrate from experiments that the proposed technique has a very small impact on the system.

Estimation of the Reach-average Velocity of Mountain Streams Using Dye Tracing (염료추적자법을 이용한 산지하천의 구간 평균 유속 추정)

  • Tae-Hyun Kim;Jeman Lee;Chulwon Lee;Sangjun Im
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.374-381
    • /
    • 2023
  • The travel time of flash floods along mountain streams is mainly governed by reach-average velocity, rather than by the point velocity of the locations of interest. Reach-average velocity is influenced by various factors such as stream geometry, streambed materials, and the hydraulic roughness of streams. In this study, the reach-average velocity in mountain streams was measured for storm periods using rhodamine dye tracing. The point cloud data obtained from a LiDAR survey was used to extract the average hydraulic roughness height, such as Ra, Rmax, and Rz. The size distribution of the streambed materials (D50, D84) was also considered in the estimation of the roughness height. The field experiments revealed that the reach-average velocities had a significant relationship with flow discharges (v = 0.5499Q0.6165 ), with an R2 value of 0.77. The root mean square error in the roughness height of the Ra-based estimation (0.45) was lower than those of the other estimations (0.47-1.04). Among the parameters for roughness height estimation, the Ra -based roughness height was the most reliable and suitable for developing the reach-average velocity equation for estimating the travel time of flood waves in mountain streams.

Data Augmentation for Tomato Detection and Pose Estimation (토마토 위치 및 자세 추정을 위한 데이터 증대기법)

  • Jang, Minho;Hwang, Youngbae
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.44-55
    • /
    • 2022
  • In order to automatically provide information on fruits in agricultural related broadcasting contents, instance image segmentation of target fruits is required. In addition, the information on the 3D pose of the corresponding fruit may be meaningfully used. This paper represents research that provides information about tomatoes in video content. A large amount of data is required to learn the instance segmentation, but it is difficult to obtain sufficient training data. Therefore, the training data is generated through a data augmentation technique based on a small amount of real images. Compared to the result using only the real images, it is shown that the detection performance is improved as a result of learning through the synthesized image created by separating the foreground and background. As a result of learning augmented images using images created using conventional image pre-processing techniques, it was shown that higher performance was obtained than synthetic images in which foreground and background were separated. To estimate the pose from the result of object detection, a point cloud was obtained using an RGB-D camera. Then, cylinder fitting based on least square minimization is performed, and the tomato pose is estimated through the axial direction of the cylinder. We show that the results of detection, instance image segmentation, and cylinder fitting of a target object effectively through various experiments.

The Research Features Analysis of Leisure and Recreation based on Co-authors Network and Topic Model (공저자 네트워크 및 토픽 모델링 기반 여가레크리에이션 학술 연구 특징 분석)

  • Park, SungGeon;Park, Kwang-Won;Kang, Hyun-Wook
    • 한국체육학회지인문사회과학편
    • /
    • v.57 no.2
    • /
    • pp.279-289
    • /
    • 2018
  • The purpose of this study is to investigate features of leisure and recreation scholarship study in The Korean Journal of physical education based on co-authors network and topic modeling through using Word Cloud and LDA Topic Modeling(Latent Dirichlet Allocation). The data collected for this study are 2,697 papers published online from January 2008 to March 2017 on the Korean journal of physical education. Respectively ordered analysis targets are the major author, author of correspondence, co-author 1, co-author 2, co-author n in related document to explore studies' trends using the 369 documents. As a result, the co-author network analysis result found that 451 were linked to the research network, on average researchers had 1.52 relationships and the average distance between researchers was 2.33. The Representative author's concentration of connection was ranked high in the order of the following, Lee. K. M., Hwang. S. H., H., Lee. C. S., and proximity centers were shown in Seo K. B., Han. J. H., Kim. K. J. Finally, parameter-centric features appeared in order of Lee. C. W. and Seo. K. B. was most actively connected between the researchers of the leisure-related academic papers. Future research needs discussions among scholars regarding the trend and direction of future leisure research.

A Blockchain Network Construction Tool and its Electronic Voting Application Case (블록체인 자동화도구 개발과 전자투표 적용사례)

  • AING TECKCHUN;KONG VUNGSOVANREACH;Okki Kim;Kyung-Hee Lee;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.151-159
    • /
    • 2021
  • Construction of a blockchain network needs a cumbersome and time consuming activity. To overcome these limitations, global IT companies such as Microsoft are providing cloud-based blockchain services. In this paper, we propose a blockchain-based construction and management tool that enables blockchain developers, blockchain operators, and enterprises to deploy blockchain more comfortably in their infrastructure. This tool is implemented using Hyperledger Fabric, one of the famous private blockchain platforms, and Ansible, an open-source IT automation engine that supports network-wide deployment. Instead of complex and repetitive text commands, the tool provides a user-friendly web dashboard interface that allows users to seamlessly set up, deploy and interact with a blockchain network. With this proposed solution, blockchain developers, operators, and blockchain researchers can more easily build blockchain infrastructure, saving time and cost. To verify the usefulness and convenience of the proposed tool, a blockchain network that conducts electronic voting was built and tested. The construction of a blockchain network, which consists of writing more than 10 setting files and executing commands over hundreds of lines, can be replaced with simple input and click operations in the graphical user interface, saving user convenience and time. The proposed blockchain tool will be used to build trust data infrastructure in various fields such as food safety supply chain construction in the future.

Development of Pollutant Transport Model Working In GIS-based River Network Incorporating Acoustic Doppler Current Profiler Data (ADCP자료를 활용한 GIS기반의 하천 네트워크에서 오염물질의 이송거동모델 개발)

  • Kim, Dongsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.551-560
    • /
    • 2009
  • This paper describes a newly developed pollutant transport model named ARPTM which was designed to simulate the transport and characteristics of pollutant materials after an accidental spill in upstream of river system up to a given position in the downstream. In particular, the ARPTM incorporated ADCP data to compute longitudinal dispersion coefficient and advection velocity which are necessary to apply one-dimensional advection-dispersion equation. ARPTM was built on top of the geographic information system platforms to take advantage of the technology's capabilities to track geo-referenced processes and visualize the simulated results in conjunction with associated geographic layers such as digital maps. The ARPTM computes travel distance, time, and concentration of the pollutant cloud in the given flow path from the river network, after quickly finding path between the spill of the pollutant material and any concerned points in the downstream. ARPTM is closely connected with a recently developed GIS-based Arc River database that stores inputs and outputs of ARPTM. ARPTM thereby assembles measurements, modeling, and cyberinfrastructure components to create a useful cyber-tool for determining and visualizing the dynamics of the clouds of pollutants while dispersing in space and time. ARPTM is expected to be potentially used for building warning system for the transport of pollutant materials in a large basin.

Intelligent Motion Pattern Recognition Algorithm for Abnormal Behavior Detections in Unmanned Stores (무인 점포 사용자 이상행동을 탐지하기 위한 지능형 모션 패턴 인식 알고리즘)

  • Young-june Choi;Ji-young Na;Jun-ho Ahn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.73-80
    • /
    • 2023
  • The recent steep increase in the minimum hourly wage has increased the burden of labor costs, and the share of unmanned stores is increasing in the aftermath of COVID-19. As a result, theft crimes targeting unmanned stores are also increasing, and the "Just Walk Out" system is introduced to prevent such thefts, and LiDAR sensors, weight sensors, etc. are used or manually checked through continuous CCTV monitoring. However, the more expensive sensors are used, the higher the initial cost of operating the store and the higher the cost in many ways, and CCTV verification is difficult for managers to monitor around the clock and is limited in use. In this paper, we would like to propose an AI image processing fusion algorithm that can solve these sensors or human-dependent parts and detect customers who perform abnormal behaviors such as theft at low costs that can be used in unmanned stores and provide cloud-based notifications. In addition, this paper verifies the accuracy of each algorithm based on behavior pattern data collected from unmanned stores through motion capture using mediapipe, object detection using YOLO, and fusion algorithm and proves the performance of the convergence algorithm through various scenario designs.

Development of Metrics to Measure Reusability Quality of AIaaS

  • Eun-Sook Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.147-153
    • /
    • 2023
  • As it spreads to all industries of artificial intelligence technology, AIaaS equipped with artificial intelligence services is emerging. In particular, non-IT companies are suffering from the absence of software experts, difficulties in training big data models, and difficulties in collecting and analyzing various types of data. AIaaS makes it easier and more economical for users to build a system by providing various IT resources necessary for artificial intelligence software development as well as functions necessary for artificial intelligence software in the form of a service. Therefore, the supply and demand for such cloud-based AIaaS services will increase rapidly. However, the quality of services provided by AIaaS becomes an important factor in what is required as the supply and demand for AIaaS increases. However, research on a comprehensive and practical quality evaluation metric to measure this is currently insufficient. Therefore, in this paper, we develop and propose a usability, replacement, scalability, and publicity metric, which are the four metrics necessary for measuring reusability, based on implementation, convenience, efficiency, and accessibility, which are characteristics of AIaaS, for reusability evaluation among the service quality measurement factors of AIaaS. The proposed metrics can be used as a tool to predict how much services provided by AIaaS can be reused for potential users in the future.

Restoration of Missing Data in Satellite-Observed Sea Surface Temperature using Deep Learning Techniques (딥러닝 기법을 활용한 위성 관측 해수면 온도 자료의 결측부 복원에 관한 연구)

  • Won-Been Park;Heung-Bae Choi;Myeong-Soo Han;Ho-Sik Um;Yong-Sik Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.536-542
    • /
    • 2023
  • Satellites represent cutting-edge technology, of ering significant advantages in spatial and temporal observations. National agencies worldwide harness satellite data to respond to marine accidents and analyze ocean fluctuations effectively. However, challenges arise with high-resolution satellite-based sea surface temperature data (Operational Sea Surface Temperature and Sea Ice Analysis, OSTIA), where gaps or empty areas may occur due to satellite instrumentation, geographical errors, and cloud cover. These issues can take several hours to rectify. This study addressed the issue of missing OSTIA data by employing LaMa, the latest deep learning-based algorithm. We evaluated its performance by comparing it to three existing image processing techniques. The results of this evaluation, using the coefficient of determination (R2) and mean absolute error (MAE) values, demonstrated the superior performance of the LaMa algorithm. It consistently achieved R2 values of 0.9 or higher and kept MAE values under 0.5 ℃ or less. This outperformed the traditional methods, including bilinear interpolation, bicubic interpolation, and DeepFill v1 techniques. We plan to evaluate the feasibility of integrating the LaMa technique into an operational satellite data provision system.

Telemedicine Protocols for the Management of Patients with Acute Spontaneous Intracerebral Hemorrhage in Rural and Medically Underserved Areas in Gangwon State : Recommendations for Doctors with Less Expertise at Local Emergency Rooms

  • Hyo Sub Jun;Kuhyun Yang;Jongyeon Kim;Jin Pyeong Jeon;Sun Jeong Kim;Jun Hyong Ahn;Seung Jin Lee;Hyuk Jai Choi;In Bok Chang;Jeong Jin Park;Jong-Kook Rhim;Sung-Chul Jin;Sung Min Cho;Sung-Pil Joo;Seung Hun Sheen;Sang Hyung Lee
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.4
    • /
    • pp.385-396
    • /
    • 2024
  • Previously, we reported the concept of a cloud-based telemedicine platform for patients with intracerebral hemorrhage (ICH) at local emergency rooms in rural and medically underserved areas in Gangwon state by combining artificial intelligence and remote consultation with a neurosurgeon. Developing a telemedicine ICH treatment protocol exclusively for doctors with less ICH expertise working in emergency rooms should be part of establishing this system. Difficulties arise in providing appropriate early treatment for ICH in rural and underserved areas before the patient is transferred to a nearby hub hospital with stroke specialists. This has been an unmet medical need for decades. The available reporting ICH guidelines are realistically applicable in university hospitals with a well-equipped infrastructure. However, it is very difficult for doctors inexperienced with ICH treatment to appropriately select and deliver ICH treatment based on the guidelines. To address these issues, we developed an ICH telemedicine protocol. Neurosurgeons from four university hospitals in Gangwon state first wrote the guidelines, and professors with extensive ICH expertise across the country revised them. Guidelines and recommendations for ICH management were described as simply as possible to allow more doctors to use them easily. We hope that our effort in developing the telemedicine protocols will ultimately improve the quality of ICH treatment in local emergency rooms in rural and underserved areas in Gangwon state.