• Title/Summary/Keyword: Cloud-based

Search Result 2,685, Processing Time 0.028 seconds

Retrieval of Aerosol Optical Depth with High Spatial Resolution using GOCI Data (GOCI 자료를 이용한 고해상도 에어로졸 광학 깊이 산출)

  • Lee, Seoyoung;Choi, Myungje;Kim, Jhoon;Kim, Mijin;Lim, Hyunkwang
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.961-970
    • /
    • 2017
  • Despite of large demand for high spatial resolution products of aerosol properties from satellite remote sensing, it has been very difficult due to the weak signal by a single pixel and higher noise from clouds. In this study, aerosol retrieval algorithm with the high spatial resolution ($500m{\times}500m$) was developed using Geostationary Ocean Color Imager (GOCI) data during the Korea-US Air Quality (KORUS-AQ) period in May-June, 2016.Currently, conventional GOCI Yonsei aerosol retrieval(YAER) algorithm provides $6km{\times}6km$ spatial resolution product. The algorithm was tested for its best possible resolution of 500 m product based on GOCI YAER version 2 algorithm. With the new additional cloud masking, aerosol optical depth (AOD) is retrieved using the inversion method, aerosol model, and lookup table as in the GOCI YAER algorithm. In some cases, 500 m AOD shows consistent horizontal distribution and magnitude of AOD compared to the 6 km AOD. However, the 500 m AOD has more retrieved pixels than 6 km AOD because of its higher spatial resolution. As a result, the 500 m AOD exists around small clouds and shows finer features of AOD. To validate the accuracy of 500 m AOD, we used dataset from ground-based Aerosol Robotic Network (AERONET) sunphotometer over Korea. Even with the spatial resolution of 500 m, 500 m AOD shows the correlation coefficient of 0.76 against AERONET, and the ratio within Expected Error (EE) of 51.1%, which are comparable to the results of 6 km AOD.

A Study on the Possibility of Using UAV Stereo Image for Measuring Tree Height in Urban Area (도심지역 수목 높이값 측정을 위한 무인항공기에서 취득된 스테레오 영상의 활용 가능성 고찰)

  • Rhee, Sooahm;Kim, Soohyeon;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1151-1157
    • /
    • 2017
  • Street Trees is an important object for urban environment improvement. Especially the height of the trees needs to be precisely measured as a factor that greatly influences the removal of air pollutants in the Urban Street Canyons. In this study, we extracted the height of the tree based on the stereo image using the precisely adjusted UAV Images of the target area. The adjustment of UAV image was applied photogrammetric SfM (Structure from motion) based on the collinear condition. We measured the height of the trees on the Street Canyon using stereoscopic vision on stereo plotting system. We also acquired the height of the building adjacent to the street trees and the average height of the road surface was calculated for accurate measurement of the height of each object. Through the visual analysis with the plotting operation system, it was possible to measure height of the tree and to calculate the relative height difference value with building quickly. This means that the height of buildings and trees can be calculated without making a 3D point cloud of UAV and it has the advantage of being able to utilize non-experts. In the future, further studies for semiautomatic/automation of this technique should be performed. The development and research of these technologies is expected to help to understand the current status of environmental policies and roadside trees in urban areas.

A Comparative Analysis of Cognitive Change about Big Data Using Social Media Data Analysis (소셜 미디어 데이터 분석을 활용한 빅데이터에 대한 인식 변화 비교 분석)

  • Yun, Youdong;Jo, Jaechoon;Hur, Yuna;Lim, Heuiseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.7
    • /
    • pp.371-378
    • /
    • 2017
  • Recently, with the spread of smart device and the introduction of web services, the data is rapidly increasing online, and it is utilized in various fields. In particular, the emergence of social media in the big data field has led to a rapid increase in the amount of unstructured data. In order to extract meaningful information from such unstructured data, interest in big data technology has increased in various fields. Big data is becoming a key resource in many areas. Big data's prospects for the future are positive, but concerns about data breaches and privacy are constantly being addressed. On this subject of big data, where positive and negative views coexist, the research of analyzing people's opinions currently lack. In this study, we compared the changes in peoples perception on big data based on unstructured data collected from the social media using a text mining. As a results, yearly keywords for domestic big data, declining positive opinions, and increasing negative opinions were observed. Based on these results, we could predict the flow of domestic big data.

Spherical-Coordinate-Based Guiding System for Automatic 3D Shape Scanning (3D 형상정보 자동 수집을 위한 구면좌표계식 스캐닝 시스템)

  • Park, Sang Wook;Maeng, Hee-Young;Lee, Myoung Sang;Kwon, Kil Sun;Na, Mi-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1029-1036
    • /
    • 2014
  • Several types of automatic 3D scanners are available for use in the 3D scanning industry, e.g., an automatic 3D scanner that uses a robot arm and one that uses an automatic rotary table. Specifically, these scanners are used to obtain a 3D shape using automatic assisting devices. Most of these scanners are required to perform numerous operations, such as merging, aligning, trimming, and filling holes. We are interested in developing an automatic 3D shape collection device using a spherical-coordinate-based guiding system. Then, the aim of the present study is to design an automatic guiding system that can automatically collect 3D shape data. We develop a 3D model of this system and measuring data which are collected by a personal computer. An optimal design of this system and the geometrical accuracy of the measured data are both evaluated using 3D modeling software. The developed system is then applied to an object having a highly complex shape and manifold sections. Our simulation results demonstrate that the developed system collects higher-quality 3D data than the conventional method.

Quantitative Flood Forecasting Using Remotely-Sensed Data and Neural Networks

  • Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.43-50
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict streamflow and flash floods. Previously, neural networks were used to develop a Quantitative Precipitation Forecasting (QPF) model that highly improved forecasting skill at specific locations in Pennsylvania, using both Numerical Weather Prediction (NWP) output and rainfall and radiosonde data. The objective of this study was to improve an existing artificial neural network model and incorporate the evolving structure and frequency of intense weather systems in the mid-Atlantic region of the United States for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as life time, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. The new Quantitative Flood Forecasting (QFF) model was applied to predict streamflow peaks with lead-times of 18 and 24 hours over a five year period in 4 watersheds on the leeward side of the Appalachian mountains in the mid-Atlantic region. Threat scores consistently above .6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 4% and up to 6% were attained for the 24 hour lead-time forecasts. This work demonstrates that multisensor data cast into an expert information system such as neural networks, if built upon scientific understanding of regional hydrometeorology, can lead to significant gains in the forecast skill of extreme rainfall and associated floods. In particular, this study validates our hypothesis that accurate and extended flood forecast lead-times can be attained by taking into consideration the synoptic evolution of atmospheric conditions extracted from the analysis of large-area remotely sensed imagery While physically-based numerical weather prediction and river routing models cannot accurately depict complex natural non-linear processes, and thus have difficulty in simulating extreme events such as heavy rainfall and floods, data-driven approaches should be viewed as a strong alternative in operational hydrology. This is especially more pertinent at a time when the diversity of sensors in satellites and ground-based operational weather monitoring systems provide large volumes of data on a real-time basis.

  • PDF

Development of an AI Analysis Service System based on OpenFaaS (OpenFaaS 기반 AI 분석 서비스 시스템 구축)

  • Jang, Rae-young;Lee, Ryong;Park, Min-woo;Lee, Sang-hwan
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.97-106
    • /
    • 2020
  • Due to the rapid development and dissemination of 5G communication and IoT technologies, there are increasing demands for big data analysis techniques and service systems. In particular, explosively growing demands on AI technology adoption are also causing high competitions to take advantages of machine/deep-learning models to extract novel values from enormously collected data. In order to adopt AI technology to various research and application domains, it is necessary to prepare high-performance GPU-equipped systems and perform complicated settings to utilze deep learning models. To relieve the efforts and lower the barrier to utilize AI techniques, AIaaS(AI as a service) platform is attracting a great deal of attention as a promising on-line service, where the complexity of preparation and operation can be hidden behind the cloud side and service developers only need to utilize the high-level AI services easily. In this paper, we propose an AIaaS system which can support the creation of AI services based on Docker and OpenFaaS from the registration of models to the on-line operation. We also describe a case study to show how AI services can be easily generated by the proposed system.

A Study of Establishing the Development Strategy of Construction Project Management System Using SWOT Analysis (SWOT분석을 통한 건설사업관리시스템 개발전략 수립에 관한 연구)

  • Kim, SeongJin;Ok, Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.86-93
    • /
    • 2016
  • Information technology, such as IoT, Big Data, Drone, Cloud etc., is evolving every year. Information Society is changing Intelligence Society and Creative Society. A new Construction Projects Management System Roadmap is required because it is difficult to reflect the current IT environments based on the CALS(Continuous Acquisition & Life-cycle Support) master plan, which is performed to establish every five years since 1998. This study was prepared for the Roadmap with a focus on Construction Management System based on the 4th CALS master plan, which was performed to establish the 2012 year. To this end, the construction environment and several information systems were investigated and analyzed. The problems of the construction project information system were derived using SWOT analysis, the vision, goal, direction, strategy, main tasks, specific tasks, and timetable of the Construction Project Management System are presented. This roadmap is designed to be used as operational indicators of a future construction project management system.

A Design of Smart Sensor Framework for Smart Home System Bsed on Layered Architecture (계층 구조에 기반을 둔 스마트 홈 시스템를 위한 스마트 센서 프레임워크의 설계)

  • Chung, Won-Ho;Kim, Yu-Bin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.49-59
    • /
    • 2017
  • Smart sensing plays a key role in a variety of IoT applications, and its importance is growing more and more together with the development of artificial intelligence. Therefore the importance of smart sensors cannot be overemphasized. However, most studies related to smart sensors have been focusing on specific application purposes, for example, security, energy saving, monitoring, and there are not much effort on researches on how to efficiently configure various types of smart sensors to be needed in the future. In this paper, a component-based framework with hierarchical structure for efficient construction of smart sensor is proposed and its application to smart home is designed and implemented. The proposed method shows that various types of smart sensors to be appeared in the near future can be configured through the design and development of necessary components within the proposed software framework. In addition, since it has a layered architecture, the configuration of the smart sensor can be expanded by inserting the internal or external layers. In particular, it is possible to independently design the internal and external modules when designing an IoT application service through connection with the external device layer. A small-scale smart home system is designed and implemented using the proposed method, and a home cloud operating as an external layer, is further designed to accommodate and manage multiple smart homes. By developing and thus adding the components of each layer, it will be possible to efficiently extend the range of applications such as smart cars, smart buildings, smart factories an so on.

Classification of Environmental Industry and Technology Competitiveness Evaluation (환경산업기술 분류체계 및 기술 경쟁력 평가)

  • Han, Daegun;Bae, Young Hye;Kim, Tae-Yong;Jung, Jaewon;Lee, Choongke;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.245-256
    • /
    • 2020
  • The purpose of this study is to evaluate the technological competitiveness of the environmental industry with developed countries in order to establish an international market expansion strategy of the Korean environmental industry and technology. In order to evaluate the competitiveness of the environmental industry and technology, core technologies were classified by the environmental industry sectors based on the classification system of the domestic and international environmental industry and technology. After developing the evaluation index data, the Delphi analysis, journal and patent analysis, as well as the export and import analysis were carried out and the standardization analysis was performed on the index data. Moreover, the weights of each evaluation index were calculated using the AHP(Analytic Hierarchy Process) method and the evaluation results of competitiveness of the environmental industry and technology in Korea, the United States, the United Kingdom, Germany, and France were derived. As a result of the evaluation, the United States was rated with the highest technological competitiveness in all the environmental industry sectors, while Korea got the lowest technological competitiveness rating compared to the 4 developed countries. In particular, Korea got the lowest level of technological competitiveness in the sector of multi-media environmental management and development for a sustainable social system. Therefore, in order for the Korean environmental industry and technology to enter the global advanced market, it is necessary to strengthen the competitiveness through the development of the fourth environmental industry based on IoT(Internet of Things), cloud, big data, mobile, and AI(Artificial Intelligence), which are currently the country's domestic strengths.

A Study on Predictive Traffic Information Using Cloud Route Search (클라우드 경로탐색을 이용한 미래 교통정보 예측 방법)

  • Jun Hyun, Kim;Kee Wook, Kwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.287-296
    • /
    • 2015
  • Recent navigation systems provide quick guide services, based on processing real-time traffic information and past traffic information by applying predictable pattern for traffic information. However, the current pattern for traffic information predicts traffic information by processing past information that it presents an inaccuracy problem in particular circumstances(accidents and weather). So, this study presented a more precise predictive traffic information system than historical traffic data first by analyzing route search data which the drivers ask in real time for the quickest way then by grasping traffic congestion levels of the route in which future drivers are supposed to locate. First results of this study, the congested route from Yang Jae to Mapo, the analysis result shows that the accuracy of the weighted value of speed of existing commonly congested road registered an error rate of 3km/h to 18km/h, however, after applying the real predictive traffic information of this study the error rate registered only 1km/h to 5km/h. Second, in terms of quality of route as compared to the existing route which allowed for an earlier arrival to the destination up to a maximum of 9 minutes and an average of up to 3 minutes that the reliability of predictable results has been secured. Third, new method allows for the prediction of congested levels and deduces results of route searches that avoid possibly congested routes and to reflect accurate real-time data in comparison with existing route searches. Therefore, this study enabled not only the predictable gathering of information regarding traffic density through route searches, but it also made real-time quick route searches based on this mechanism that convinced that this new method will contribute to diffusing future traffic flow.