• Title/Summary/Keyword: Cloud forensic

Search Result 28, Processing Time 0.02 seconds

Practical and Legal Challenges of Cloud Investigations (클라우드 환경에서 수사 실무와 법적 과제)

  • James, Joshua I.;Jang, Yunsik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.33-39
    • /
    • 2014
  • An area presenting new opportunities for both legitimate business, as well as criminal organizations, is Cloud computing. This work gives a strong background in current digital forensic science, as well as a basic understanding of the goal of Law Enforcement when conducting digital forensic investigations. These concepts are then applied to digital forensic investigation of cloud environments in both theory and practice, and supplemented with current literature on the subject. Finally, legal challenges with digital forensic investigations in cloud environments are discussed.

Digital Forensic Model Suitable for Cloud Environment (클라우드 환경에 적합한 디지털 포렌식 수사 모델)

  • Lee, Gymin;Lee, Youngsook
    • Convergence Security Journal
    • /
    • v.17 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • Cloud computing is a service that to use IT resources (software, storage, server, network) through various equipment in an Internet-enabled environment. Due to convenience, efficiency, and cost reduction, the utilization rate has increased recently. However, Cloud providers have become targets for attack Also, Abuse of cloud service is considered as the top security threat. The existing digital forensic procedures are suitable for investigations on individual terminals. In this paper, we propose a new investigation model by analyzing the vulnerable points that occur when you investigate the cloud environment with the existing digital forensic investigation procedure. The proposed investigation model adds a way to obtain account information, and can apply public cloud and private cloud together. Cloud services are also easily accessible and are likely to destroy digital evidence. Therefore, the investigation model was reinforced by adding an account access blocking step.

Cloud Services for the forensic aspects of the investigative methods (클라우드 서비스에 대한 포렌식 측면의 수사 방법)

  • Park, Gi-Hong;No, Si-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.1
    • /
    • pp.39-46
    • /
    • 2012
  • In this paper, for the cloud system by explaining how the forensic aspects of the investigation. Smartphone Growth Entering a variety of applications were developed which cloud systems of personal information and information assets sharing applications as during incidents on the case evidence collection, an important factor, whereas such systematic investigative methods, born in the course of my investigation of the can be confusing. This paper on the forensic aspects of the cloud system by proposing a crime scene investigation procedures, investigative support, and aiding in the systematic collection of data to support evidence.

Digital Forensic Investigation of Virtual Desktop Infrastructure (가상 데스크톱 환경에 대한 디지털 포렌식 연구)

  • Jang, Sanghee;Kim, Deunghwa;Park, Jungheum;Kang, Cheulhoon;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.2
    • /
    • pp.203-212
    • /
    • 2013
  • Recently, cloud computing is one of the parts showing the biggest growth in the IT market and is expected to continue to grow into. Especially, many companies are adopting virtual desktop infrastructure as private cloud computing to achieve in saving the cost and enhancing the efficiency of the servers. However, current digital forensic investigation methodology of cloud computing is not systematized scientifically and technically. To do this, depending on the type of each cloud computing services, digital evidence collection system for the legal enforcement should be established. In this paper, we focus on virtual desktop infrastructure as private cloud computing and introduce the most widely used around the world desktop virtualization solutions of VMware, Citrix, and Microsoft. And We propose digital forensic investigation methodology for private cloud computing that is constructed by these solutions.

Digital Forensics Framework for Cloud Computing (클라우드 환경을 고려한 디지털 포렌식 프레임워크)

  • Lee, Chang-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • Recently, companies seek a way to overcome their financial crisis by reducing costs in the field of IT. In such a circumstance, cloud computing is rapidly emerging as an optimal solution to the crisis. Even in a digital forensic investigation, whether users of an investigated system have used a cloud service is a very important factor in selecting additional investigated subjects. When a user has used cloud services, such as Daum Cloud and Google Docs, it is possible to connect to the could service from a remote place by acquiring the user's log-in information. In such a case, evidence data should be collected from the remote place for an efficient digital forensic investigation, and it is needed to conduct research on the collection and analysis of data from various kinds of cloud services. Thus, this study suggested a digital forensic framework considering cloud environments by investigating collection and analysis techniques for each cloud service.

A Digital Forensic Framework Design for Joined Heterogeneous Cloud Computing Environment

  • Zayyanu Umar;Deborah U. Ebem;Francis S. Bakpo;Modesta Ezema
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.207-215
    • /
    • 2024
  • Cloud computing is now used by most companies, business centres and academic institutions to embrace new computer technology. Cloud Service Providers (CSPs) are limited to certain services, missing some of the assets requested by their customers, it means that different clouds need to interconnect to share resources and interoperate between them. The clouds may be interconnected in different characteristics and systems, and the network may be vulnerable to volatility or interference. While information technology and cloud computing are also advancing to accommodate the growing worldwide application, criminals use cyberspace to perform cybercrimes. Cloud services deployment is becoming highly prone to threats and intrusions. The unauthorised access or destruction of records yields significant catastrophic losses to organisations or agencies. Human intervention and Physical devices are not enough for protection and monitoring of cloud services; therefore, there is a need for more efficient design for cyber defence that is adaptable, flexible, robust and able to detect dangerous cybercrime such as a Denial of Service (DOS) and Distributed Denial of Service (DDOS) in heterogeneous cloud computing platforms and make essential real-time decisions for forensic investigation. This paper aims to develop a framework for digital forensic for the detection of cybercrime in a joined heterogeneous cloud setup. We developed a Digital Forensics model in this paper that can function in heterogeneous joint clouds. We used Unified Modeling Language (UML) specifically activity diagram in designing the proposed framework, then for deployment, we used an architectural modelling system in developing a framework. We developed an activity diagram that can accommodate the variability and complexities of the clouds when handling inter-cloud resources.

Digital Forensic Methodology of IaaS Cloud Computing Service (IaaS 유형의 클라우드 컴퓨팅 서비스에 대한 디지털 포렌식 연구)

  • Jeong, Il-Hoon;Oh, Jung-Hoon;Park, Jung-Heum;Lee, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.55-65
    • /
    • 2011
  • Recently, use of cloud computing service is dramatically increasing due to wired and wireless communications network diffusion in a field of high performance Internet technique. Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. In a view of digital forensic investigation, it is difficult to obtain data from cloud computing service environments. therefore, this paper suggests analysis method of AWS(Amazon Web Service) and Rackspace which take most part in cloud computing service where IaaS formats presented for data acquisition in order to get an evidence.

The Study on Forensic Techniques of Chromebook (크롬북 포렌식 기법에 관한 연구)

  • Yoon, Yeo-Kyung;Lee, Sang-Jin
    • Journal of Digital Forensics
    • /
    • v.12 no.3
    • /
    • pp.55-70
    • /
    • 2018
  • With the diversification of mobile devices, the development of web technologies, and the popularization of the cloud, an internet-centric web OS that is not dependent on devices has become necessary. Chromebooks are mobile devices in the form of convertible laptops featuring a web OS developed by Google. These Web OS mobile devices have advantages of multi-user characteristics of the same device and storage and sharing of data through internet and cloud, but it is easy to collect and analyze evidence from the forensic point of view because of excellent security and easy destruction of evidence not. In this paper, we propose an evidence collection procedure and an analysis method considering the cloud environment by dividing the Chromebook, which is a web OS mobile device popularized in the future, into user and administrator modes.

Optimization of forensic identification through 3-dimensional imaging analysis of labial tooth surface using open-source software

  • Arofi Kurniawan;Aspalilah Alias;Mohd Yusmiaidil Putera Mohd Yusof;Anand Marya
    • Imaging Science in Dentistry
    • /
    • v.54 no.1
    • /
    • pp.63-69
    • /
    • 2024
  • Purpose: The objective of this study was to determine the minimum number of teeth in the anterior dental arch that would yield accurate results for individual identification in forensic contexts. Materials and Methods: The study involved the analysis of 28 sets of 3-dimensional (3D) point cloud data, focused on the labial surface of the anterior teeth. These datasets were superimposed within each group in both genuine and imposter pairs. Group A incorporated data from the right to the left central incisor, group B from the right to the left lateral incisor, and group C from the right to the left canine. A comprehensive analysis was conducted, including the evaluation of root mean square error (RMSE) values and the distances resulting from the superimposition of dental arch segments. All analyses were conducted using CloudCompare version 2.12.4 (Telecom ParisTech and R&D, Kyiv, Ukraine). Results: The distances between genuine pairs in groups A, B, and C displayed an average range of 0.153 to 0.184mm. In contrast, distances for imposter pairs ranged from 0.338 to 0.522 mm. RMSE values for genuine pairs showed an average range of 0.166 to 0.177, whereas those for imposter pairs ranged from 0.424 to 0.638. A statistically significant difference was observed between the distances of genuine and imposter pairs(P<0.05). Conclusion: The exceptional performance observed for the labial surfaces of anterior teeth underscores their potential as a dependable criterion for accurate 3D dental identification. This was achieved by assessing a minimum of 4 teeth.

Genomic data Analysis System using GenoSync based on SQL in Distributed Environment

  • Seine Jang;Seok-Jae Moon
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.150-155
    • /
    • 2024
  • Genomic data plays a transformative role in medicine, biology, and forensic science, offering insights that drive advancements in clinical diagnosis, personalized medicine, and crime scene investigation. Despite its potential, the integration and analysis of diverse genomic datasets remain challenging due to compatibility issues and the specialized nature of existing tools. This paper presents the GenomeSync system, designed to overcome these limitations by utilizing the Hadoop framework for large-scale data handling and integration. GenomeSync enhances data accessibility and analysis through SQL-based search capabilities and machine learning techniques, facilitating the identification of genetic traits and the resolution of forensic cases. By pre-processing DNA profiles from crime scenes, the system calculates similarity scores to identify and aggregate related genomic data, enabling accurate prediction models and personalized treatment recommendations. GenomeSync offers greater flexibility and scalability, supporting complex analytical needs across industries. Its robust cloud-based infrastructure ensures data integrity and high performance, positioning GenomeSync as a crucial tool for reliable, data-driven decision-making in the genomic era.