• Title/Summary/Keyword: Cloud computing systems

Search Result 594, Processing Time 0.028 seconds

Consideration Points for application of KOMPSAT Data to Open Data Cube (다목적실용위성 자료의 오픈 데이터 큐브 적용을 위한 기본 고려사항)

  • LEE, Ki-Won;KIM, Kwang-Seob;LEE, Sun-Gu;KIM, Yong-Seung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.1
    • /
    • pp.62-77
    • /
    • 2019
  • Open Data Cube(ODC) has been emerging and developing as the open source platform in the Committee on Earth Observation Satellites(CEOS) for the Global Earth Observation System of Systems(GEOSS) deployed by the Group on Earth Observations (GEO), ODC can be applied to the deployment of scalable and large amounts of free and open satellite images in a cloud computing environment, and ODC-based country or regional application services have been provided for public users on the high performance. This study first summarizes the status of ODC, and then presents concepts and some considering points for linking this platform with Korea Multi-Purpose Satellite (KOMPSAT) images. For the reference, the main contents of ODC with the Google Earth Engine(GEE) were compared. Application procedures of KOMPSAT satellite image to implement ODC service were explained, and an intermediate process related to data ingestion using actual data was demonstrated. As well, it suggested some practical schemes to utilize KOMPSAT satellite images for the ODC application service from the perspective of open data licensing. Policy and technical products for KOMPSAT images to ODC are expected to provide important references for GEOSS in GEO to apply new satellite images of other countries and organizations in the future.

Design and Evaluation of an Efficient Flushing Scheme for key-value Store (키-값 저장소를 위한 효율적인 로그 처리 기법 설계 및 평가)

  • Han, Hyuck
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.5
    • /
    • pp.187-193
    • /
    • 2019
  • Key-value storage engines are an essential component of growing demand in many computing environments, including social networks, online e-commerce, and cloud services. Recent key-value storage engines offer many features such as transaction, versioning, and replication. In a key-value storage engine, transaction processing provides atomicity through Write-Ahead-Logging (WAL), and a synchronous commit method for transaction processing flushes log data before the transaction completes. According to our observation, flushing log data to persistent storage is a performance bottleneck for key-value storage engines due to the significant overhead of fsync() calls despite the various optimizations of existing systems. In this article, we propose a group synchronization method to improve the performance of the key-value storage engine. We also design and implement a transaction scheduling method to perform other transactions while the system processes fsync() calls. The proposed method is an efficient way to reduce the number of frequent fsync() calls in the synchronous commit while supporting the same level of transaction provided by the existing system. We implement our scheme on the WiredTiger storage engine and our experimental results show that the proposed system improves the performance of key-value workloads over existing systems.

Real-Time GPU Task Monitoring and Node List Management Techniques for Container Deployment in a Cluster-Based Container Environment (클러스터 기반 컨테이너 환경에서 실시간 GPU 작업 모니터링 및 컨테이너 배치를 위한 노드 리스트 관리기법)

  • Jihun, Kang;Joon-Min, Gil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.11
    • /
    • pp.381-394
    • /
    • 2022
  • Recently, due to the personalization and customization of data, Internet-based services have increased requirements for real-time processing, such as real-time AI inference and data analysis, which must be handled immediately according to the user's situation or requirement. Real-time tasks have a set deadline from the start of each task to the return of the results, and the guarantee of the deadline is directly linked to the quality of the services. However, traditional container systems are limited in operating real-time tasks because they do not provide the ability to allocate and manage deadlines for tasks executed in containers. In addition, tasks such as AI inference and data analysis basically utilize graphical processing units (GPU), which typically have performance impacts on each other because performance isolation is not provided between containers. And the resource usage of the node alone cannot determine the deadline guarantee rate of each container or whether to deploy a new real-time container. In this paper, we propose a monitoring technique for tracking and managing the execution status of deadlines and real-time GPU tasks in containers to support real-time processing of GPU tasks running on containers, and a node list management technique for container placement on appropriate nodes to ensure deadlines. Furthermore, we demonstrate from experiments that the proposed technique has a very small impact on the system.

Precision monitoring of radial growth of trees and micro-climate at a Korean Fir (Abies koreana Wilson) forest at 10 minutes interval in 2016 on Mt. Hallasan National Park, Jeju Island, Korea

  • Kim, Eun-Shik;Cho, Hong-Bum;Heo, Daeyoung;Kim, Nae-Soo;Kim, Young-Sun;Lee, Kyeseon;Lee, Sung-Hoon;Ryu, Jaehong
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.226-245
    • /
    • 2019
  • To understand the dynamics of radial growth of trees and micro-climate at a site of Korean fir (Abies koreana Wilson) forest on high-altitude area of Mt. Hallasan National Park, Jeju Island, Korea, high precision dendrometers were installed on the stems of Korean fir trees, and the sensors for measuring micro-climate of the forest at 10 minutes interval were also installed at the forest. Data from the sensors were sent to nodes, collected to a gateway wireless, and transmitted to a data server using mobile phone communication system. By analyzing the radial growth data for the trees during the growing season in 2016, we can estimate that the radial growth of Korean fir trees initiated in late April to early May and ceased in late August to early September, which indicates that period for the radial growth was about 4 months in 2016. It is interesting to observe that the daily ambient temperature and the daily soil temperature at the depth of 20 cm coincided with the values of about 10 ℃ when the radial growth of the trees initiated in 2016. When the radial growth ceased, the values of the ambient temperature went down below about 15 ℃ and 16 ℃, respectively. While the ambient temperature and the soil temperature are evaluated to be the good indicators for the initiation and the cessation of radial growth, it becomes clear that radii of tree stems showed diurnal growth patterns affected by diurnal change of ambient temperature. In addition, the wetting and drying of the surface of the tree stems affected by precipitation became the additional factors that affect the expansion and shrinkage of the tree stems at the forest site. While it is interesting to note that the interrelationships among the micro-climatic factors at the forest site were well explained through this study, it should be recognized that the precision monitoring made possible with the application of high resolution sensors in the measurement of the radial increment combined with the observation of 10 minutes interval with aids of information and communication technology in the ecosystem observation.

The effects of the Partnership in Supply Chain Management with Appling Social Business on the outcome of the SCM (소셜 비즈니스를 활용한 공급 사슬에서의 파트너십이 SCM 성과에 미치는 영향)

  • Kim, So-Chun;Lim, Wang-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.95-110
    • /
    • 2014
  • The purpose of this research is to further investigate the influence of partnership between with the mediator effect of the social business on the outcome of SCM. IT technology fusion electronic tags, mobile phone, such as cloud computing is also activated in supply chain management of recently, business is faster, if social business is applied here that are smarter, customers or suppliers, there may be communication directly and to further improve the relationship partnership. 150 questionnaires were sent to companies that have introduced SCM to their systems and are operating it. Among 150 questionnaires, 127 collected data were analyzed excluding incomplete 23 data. Statistical methods used in this study were frequency analysis, factor analysis, reliability analysis, t-test, ANOVA, path analysis, Scheffe test and Sobel test with Amos 18.0. and SPSS 21.0. The analytical results are as follows. First, the more the reliability, information share, continuous transaction, effects on the social business are getting higher, the interdependence has little impact on it. Second, the impact on the outcome of SCM, partnerships between companies, showed a significant influence the reliability, the share of information, the continuous transaction, but the interdependence was analysed as an uninfluential factor. Third, the social business is analyses to have a mediator effect in relationship between the partnership and the outcome of SCM.

Improvement of legal systems of automobile in the era of the 4th industrial revolution (4차 산업혁명 시대의 자동차 관련 법제의 합리적 개선방안)

  • Park, Jong-Su
    • Journal of Legislation Research
    • /
    • no.53
    • /
    • pp.269-310
    • /
    • 2017
  • This article aims at the study on Improvement of legal System which is related to automated vehicles in the era of the 4th industrial revolution. Legal aspects of driving automation have two view points. One is to permit a automated vehicle, the other is to regulate the behavior of driver on the road. Signifying elements of the 4th industrial revolution are IoT, AI, big data, cloud computing etc. Automated vehicles are the imbodiment of those new ICT technologies. The vehicle management act(VMA) rules about vehicle registration and approval of vehicle types. VMA defines a automated vehicle as a vehicle which can be self driven without handling of driver or passenger. Vehicle makers can take temporary driving permission for testing and research the driving automation. Current definition of automated vehicle of VMA is not enough for including all levels of SAE driving automation. In the VMA must be made also a new vehicle safty standard for automated vehicle. In the national assembly is curruntly pending three draft bills about legislation of artificial intelligence. Driving automation and AI technologies must be parallel developed. It is highly expected that more proceeding research of driving automation can be realized as soon as possible.

Design of detection method for smoking based on Deep Neural Network (딥뉴럴네트워크 기반의 흡연 탐지기법 설계)

  • Lee, Sanghyun;Yoon, Hyunsoo;Kwon, Hyun
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.191-200
    • /
    • 2021
  • Artificial intelligence technology is developing in an environment where a lot of data is produced due to the development of computing technology, a cloud environment that can store data, and the spread of personal mobile phones. Among these artificial intelligence technologies, the deep neural network provides excellent performance in image recognition and image classification. There have been many studies on image detection for forest fires and fire prevention using such a deep neural network, but studies on detection of cigarette smoking were insufficient. Meanwhile, military units are establishing surveillance systems for various facilities through CCTV, and it is necessary to detect smoking near ammunition stores or non-smoking areas to prevent fires and explosions. In this paper, by reflecting experimentally optimized numerical values such as activation function and learning rate, we did the detection of smoking pictures and non-smoking pictures in two cases. As experimental data, data was constructed by crawling using pictures of smoking and non-smoking published on the Internet, and a machine learning library was used. As a result of the experiment, when the learning rate is 0.004 and the optimization algorithm Adam is used, it can be seen that the accuracy of 93% and F1-score of 94% are obtained.

Analysis of Minimum Logistics Cost in SMEs using Korean-type CIPs Payment System (한국형 CIPs 결제 시스템을 이용한 중소기업의 최소 물류비용 분석)

  • Kim, Ilgoun;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.7-18
    • /
    • 2021
  • Recently, various connected industrial parks (CIPs) architectures using new technologies such as cloud computing, CPS, big data, fifth-generation mobile communication 5G, IIoT, VR-AR, and ventilation transportation AI algorithms have been proposed in Korea. Korea's small and medium-sized enterprises do not have the upper hand in technological competitiveness than overseas advanced countries such as the United States, Europe and Japan. For this reason, Korea's small and medium-sized enterprises have to invest a lot of money in technology research and development. As a latecomer, Korean SMEs need to improve their profitability in order to find sustainable growth potential. Financially, it is most efficient for small and medium-sized Korean companies to cut costs to increase their profitability. This paper made profitability improvement by reducing costs for small and medium-sized enterprises located in CIPs in Korea a major task. VJP (Vehicle Action Program) was noted as a way to reduce costs for small and medium-sized enterprises located in CIPs in Korea. The method of achieving minimum logistics costs for small businesses through the Korean CIPs payment system was analyzed. The details of the new Korean CIPs payment system were largely divided into four types: "Business", "Data", "Technique", and "Finance". Cost Benefit Analysis (CBA) was used as a performance analysis method for CIPs payment systems.

Anomaly Detection Methodology Based on Multimodal Deep Learning (멀티모달 딥 러닝 기반 이상 상황 탐지 방법론)

  • Lee, DongHoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.101-125
    • /
    • 2022
  • Recently, with the development of computing technology and the improvement of the cloud environment, deep learning technology has developed, and attempts to apply deep learning to various fields are increasing. A typical example is anomaly detection, which is a technique for identifying values or patterns that deviate from normal data. Among the representative types of anomaly detection, it is very difficult to detect a contextual anomaly that requires understanding of the overall situation. In general, detection of anomalies in image data is performed using a pre-trained model trained on large data. However, since this pre-trained model was created by focusing on object classification of images, there is a limit to be applied to anomaly detection that needs to understand complex situations created by various objects. Therefore, in this study, we newly propose a two-step pre-trained model for detecting abnormal situation. Our methodology performs additional learning from image captioning to understand not only mere objects but also the complicated situation created by them. Specifically, the proposed methodology transfers knowledge of the pre-trained model that has learned object classification with ImageNet data to the image captioning model, and uses the caption that describes the situation represented by the image. Afterwards, the weight obtained by learning the situational characteristics through images and captions is extracted and fine-tuning is performed to generate an anomaly detection model. To evaluate the performance of the proposed methodology, an anomaly detection experiment was performed on 400 situational images and the experimental results showed that the proposed methodology was superior in terms of anomaly detection accuracy and F1-score compared to the existing traditional pre-trained model.

An Improvement of Kubernetes Auto-Scaling Based on Multivariate Time Series Analysis (다변량 시계열 분석에 기반한 쿠버네티스 오토-스케일링 개선)

  • Kim, Yong Hae;Kim, Young Han
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.3
    • /
    • pp.73-82
    • /
    • 2022
  • Auto-scaling is one of the most important functions for cloud computing technology. Even if the number of users or service requests is explosively increased or decreased, system resources and service instances can be appropriately expanded or reduced to provide services suitable for the situation and it can improves stability and cost-effectiveness. However, since the policy is performed based on a single metric data at the time of monitoring a specific system resource, there is a problem that the service is already affected or the service instance that is actually needed cannot be managed in detail. To solve this problem, in this paper, we propose a method to predict system resource and service response time using a multivariate time series analysis model and establish an auto-scaling policy based on this. To verify this, implement it as a custom scheduler in the Kubernetes environment and compare it with the Kubernetes default auto-scaling method through experiments. The proposed method utilizes predictive data based on the impact between system resources and response time to preemptively execute auto-scaling for expected situations, thereby securing system stability and providing as much as necessary within the scope of not degrading service quality. It shows results that allow you to manage instances in detail.