• Title/Summary/Keyword: Cloud computing systems

Search Result 596, Processing Time 0.023 seconds

Comparison of Search Performance of SQLite3 Database by Linux File Systems (Linux File Systems에 따른 SQLite3 데이터베이스의 검색 성능 비교)

  • Choi, Jin-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Recently, IoT sensors are often used to produce stream data locally and they are provided for edge computing applications. Mass-produced data are stored in the mobile device's database for real-time processing and then synchronized with the server when needed. Many mobile databases are developed to support those applications. They are CloudScape, DB2 Everyplace, ASA, PointBase Mobile, etc, and the most widely used database is SQLite3 on Linux. In this paper, we focused on the performance required for synchronization with the server. The search performance required to retrieve SQLite3 was compared and analyzed according to the type of each Linux file system in which the database is stored. Thus, performance differences were checked for each file system according to various search query types, and criteria for applying the more appropriate Linux file system according to the index use environment and table scan environment were prepared and presented.

Leveraging Big Data for Spark Deep Learning to Predict Rating

  • Mishra, Monika;Kang, Mingoo;Woo, Jongwook
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.33-39
    • /
    • 2020
  • The paper is to build recommendation systems leveraging Deep Learning and Big Data platform, Spark to predict item ratings of the Amazon e-commerce site. Recommendation system in e-commerce has become extremely popular in recent years and it is very important for both customers and sellers in daily life. It means providing the users with products and services they are interested in. Therecommendation systems need users' previous shopping activities and digital footprints to make best recommendation purpose for next item shopping. We developed the recommendation models in Amazon AWS Cloud services to predict the users' ratings for the items with the massive data set of Amazon customer reviews. We also present Big Data architecture to afford the large scale data set for storing and computation. And, we adopted deep learning for machine learning community as it is known that it has higher accuracy for the massive data set. In the end, a comparative conclusion in terms of the accuracy as well as the performance is illustrated with the Deep Learning architecture with Spark ML and the traditional Big Data architecture, Spark ML alone.

Mutual Authentication and Key Establishment Mechanism for Secure Data Sharing in M2M Environment (M2M 환경에서 안전한 데이터 공유를 위한 상호인증 및 키 교환 기법)

  • Park, JungOh;Kim, Sangkun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.33-41
    • /
    • 2015
  • With rapid rise of virtualization technology from diverse types of cloud computing service, security problems such as data safety and reliability are the issues at stake. Since damage in virtualization layer of cloud service can cause damage on all host (user) tasks, Hypervisor that provides an environment for multiple virtual operating systems can be a target of attackers. This paper propose a security structure for protecting Hypervisor from hacking and malware infection.

Novel Multi-user Conjunctive Keyword Search Against Keyword Guessing Attacks Under Simple Assumptions

  • Zhao, Zhiyuan;Wang, Jianhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3699-3719
    • /
    • 2017
  • Conjunctive keyword search encryption is an important technique for protecting sensitive personal health records that are outsourced to cloud servers. It has been extensively employed for cloud storage, which is a convenient storage option that saves bandwidth and economizes computing resources. However, the process of searching outsourced data may facilitate the leakage of sensitive personal information. Thus, an efficient data search approach with high security is critical. The multi-user search function is critical for personal health records (PHRs). To solve these problems, this paper proposes a novel multi-user conjunctive keyword search scheme (mNCKS) without a secure channel against keyword guessing attacks for personal health records, which is referred to as a secure channel-free mNCKS (SCF-mNCKS). The security of this scheme is demonstrated using the Decisional Bilinear Diffie-Hellman (DBDH) and Decision Linear (D-Linear) assumptions in the standard model. Comparisons are performed to demonstrate the security advantages of the SCF-mNCKS scheme and show that it has more functions than other schemes in the case of analogous efficiency.

A Design of DBaaS-Based Collaboration System for Big Data Processing

  • Jung, Yean-Woo;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.59-65
    • /
    • 2016
  • With the recent growth in cloud computing, big data processing and collaboration between businesses are emerging as new paradigms in the IT industry. In an environment where a large amount of data is generated in real time, such as SNS, big data processing techniques are useful in extracting the valid data. MapReduce is a good example of such a programming model used in big data extraction. With the growing collaboration between companies, problems of duplication and heterogeneity among data due to the integration of old and new information storage systems have arisen. These problems arise because of the differences in existing databases across the various companies. However, these problems can be negated by implementing the MapReduce technique. This paper proposes a collaboration system based on Database as a Service, or DBaaS, to solve problems in data integration for collaboration between companies. The proposed system can reduce the overhead in data integration, while being applied to structured and unstructured data.

An Enhanced Remote Data Checking Scheme for Dynamic Updates

  • Dong, Lin;Park, Jinwoo;Hur, Junbeom;Park, Ho-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1744-1765
    • /
    • 2014
  • A client stores data in the cloud and uses remote data checking (RDC) schemes to check the integrity of the data. The client can detect the corruption of the data using RDC schemes. Recently, robust RDC schemes have integrated forward error-correcting codes (FECs) to ensure the integrity of data while enabling dynamic update operations. Thus, minor data corruption can be recovered by FECs, whereas major data corruption can be detected by spot-checking techniques. However, this requires high communication overhead for dynamic update, because a small update may require the client to download an entire file. The Variable Length Constraint Group (VLCG) scheme overcomes this disadvantage by downloading the RS-encoded parity data for update instead of the entire file. Despite this, it needs to download all the parity data for any minor update. In this paper, we propose an improved RDC scheme in which the communication overhead can be reduced by downloading only a part of the parity data for update while simultaneously ensuring the integrity of the data. Efficiency and security analysis show that the proposed scheme enhances efficiency without any security degradation.

An ID-based Broadcast Encryption Scheme for Cloud-network Integration in Smart Grid

  • Niu, Shufen;Fang, Lizhi;Song, Mi;Yu, Fei;Han, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3365-3383
    • /
    • 2021
  • The rapid growth of data has successfully promoted the development of modern information and communication technologies, which are used to process data generated by public urban departments and citizens in modern cities. In specific application areas where the ciphertext of messages generated by different users' needs to be transmitted, the concept of broadcast encryption is important. It can not only improve the transmission efficiency but also reduce the cost. However, the existing schemes cannot entirely ensure the privacy of receivers and dynamically adjust the user authorization. To mitigate these deficiencies, we propose an efficient, secure identity-based broadcast encryption scheme that achieves direct revocation and receiver anonymity, along with the analysis of smart grid solutions. Moreover, we constructed a security model to ensure wireless data transmission under cloud computing and internet of things integrated devices. The achieved results reveal that the proposed scheme is semantically secure in the random oracle model. The performance of the proposed scheme is evaluated through theoretical analysis and numerical experiments.

Development of an intelligent edge computing device equipped with on-device AI vision model (온디바이스 AI 비전 모델이 탑재된 지능형 엣지 컴퓨팅 기기 개발)

  • Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.17-22
    • /
    • 2022
  • In this paper, we design a lightweight embedded device that can support intelligent edge computing, and show that the device quickly detects an object in an image input from a camera device in real time. The proposed system can be applied to environments without pre-installed infrastructure, such as an intelligent video control system for industrial sites or military areas, or video security systems mounted on autonomous vehicles such as drones. The On-Device AI(Artificial intelligence) technology is increasingly required for the widespread application of intelligent vision recognition systems. Computing offloading from an image data acquisition device to a nearby edge device enables fast service with less network and system resources than AI services performed in the cloud. In addition, it is expected to be safely applied to various industries as it can reduce the attack surface vulnerable to various hacking attacks and minimize the disclosure of sensitive data.

Machine Learning-based Detection of HTTP DoS Attacks for Cloud Web Applications (머신러닝 기반 클라우드 웹 애플리케이션 HTTP DoS 공격 탐지)

  • Jae Han Cho;Jae Min Park;Tae Hyeop Kim;Seung Wook Lee;Jiyeon Kim
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.66-75
    • /
    • 2023
  • Recently, the number of cloud web applications is increasing owing to the accelerated migration of enterprises and public sector information systems to the cloud. Traditional network attacks on cloud web applications are characterized by Denial of Service (DoS) attacks, which consume network resources with a large number of packets. However, HTTP DoS attacks, which consume application resources, are also increasing recently; as such, developing security technologies to prevent them is necessary. In particular, since low-bandwidth HTTP DoS attacks do not consume network resources, they are difficult to identify using traditional security solutions that monitor network metrics. In this paper, we propose a new detection model for detecting HTTP DoS attacks on cloud web applications by collecting the application metrics of web servers and learning them using machine learning. We collected 18 types of application metrics from an Apache web server and used five machine learning and two deep learning models to train the collected data. Further, we confirmed the superiority of the application metrics-based machine learning model by collecting and training 6 additional network metrics and comparing their performance with the proposed models. Among HTTP DoS attacks, we injected the RUDY and HULK attacks, which are low- and high-bandwidth attacks, respectively. As a result of detecting these two attacks using the proposed model, we found out that the F1 scores of the application metrics-based machine learning model were about 0.3 and 0.1 higher than that of the network metrics-based model, respectively.

The Study of the SOA Enabled ERP Systems Implementation in Service Industry: Case Study

  • Kim, Gyu-C.
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.1
    • /
    • pp.73-93
    • /
    • 2012
  • The primary objective of this research is to explain how to implement the Service Oriented Architecture (hereafter SOA) enabled Enterprise Resource Planning (hereafter ERP) system successfully for service industries. An implementation of the ERP system help many organizations to alleviate the difficult job of supporting inflexible or legacy systems that in most cases result in cost increases, data redundancy and inaccuracy, and various inefficiencies. However, the ERP system is losing its market share rapidly to the cloud computing system which utilizes the Software-as-a-service (hereafter SaaS) and SOA. The SOA is an approach to integrate various types of IT resources to leverage existing ERP system, while at the same time building an infrastructure that can readily respond to new business environment and offer new dynamic applications. The companies that implement this system have less of a need for the kinds of all-in-one ERP system that have dominated the back office for decades and can move freely to best-of-breed applications. This research will identify the benefits and costs of the SOA enabled ERP system through case studies and its impact on competitive priorities such as cost, quality, delivery, and flexibility.