• 제목/요약/키워드: Cloud Index

검색결과 179건 처리시간 0.029초

시계열 패턴 반응형 Low-peak 탐지 기법을 통한 NDVI 보정방법 개선 (An improved method of NDVI correction through pattern-response low-peak detection on time series)

  • 이경상;한경수
    • 대한원격탐사학회지
    • /
    • 제30권4호
    • /
    • pp.505-510
    • /
    • 2014
  • NDVI는 기후변화 모니터링과 식생 변화 탐지 모니터링을 위한 주요한 지표이다. NDVI를 산출하기 전에 cloud masking, 대기보정과 같은 전처리 과정을 거침에도 불구하고 강수, 적설이나 구름의 영향이 완전히 제거되지 않아 NDVI가 현저히 낮게 관측되는 noise가 불규칙적으로 발생한다. 이러한 noise를 보정하기 위해서 국내외로 활발한 연구가 진행되고 있다. 기존의 다중 다항 회귀식을 이용한 방법에서는 과대추정이나 low peak를 잘 탐지하지 못하는 등 문제점이 나타나고 있으므로 보다 정확하게 noise를 보정하는 방법이 요구된다. 본 연구에서는 이동평균을 이용하여 noise를 보정하였고, 기존의 다중 다항 회귀식을 이용하여 산출한 NDVI 시계열과 비교를 해보았다. 그 결과 이동평균을 이용한 방법이 이전의 방법보다 NDVI noise를 잘 보정하는 것으로 보여진다.

클라우드 컴퓨팅 기술을 활용한 데스크탑 가상화 기반의 BIM 설계 환경 구축에 관한 연구 (A Study of the Establishment of BIM Design Environment based on Virtual Desktop Infrastructure(VDI) of Cloud Computing Technology)

  • 신중환;이규협;권순욱;최규성;고형렬
    • 한국건설관리학회논문집
    • /
    • 제16권4호
    • /
    • pp.118-128
    • /
    • 2015
  • BIM 기술은 현재 빠르게 건설 산업 전반에 적용 및 확산되고 있다. 그러나 고비용의 BIM 인프라, 법령의 부재, 운영 프로세스 등의 문제로 도입 초기의 기대와 달리 그 활용도면에서 만족할 만한 기대치를 채우지 못하고 있다. 설계 단계에서 수행되는 BIM 기술 기반의 협업 설계 인프라 구축은 성공적인 건설 프로젝트를 위한 필수 요소로 볼 수 있다. 현재 BIM은 클라우드 컴퓨팅기술과 결합하여 드로잉, 3D 모델링, 객체 데이터, 속성 정보 등을 생성할 수 있는 서비스 들이 파생되고 있으며 설계 인프라를 위한 핵심으로 떠오르고 있다. 본 논문은 VDI 시스템 환경 설정 및 구축을 통해 BIM 모델링, Viewing, 모델 체크, 마크업 등 BIM을 수행할 수 있는 서버 인프라 서비스 구축 방안을 제시한다. VDI 성능 시스템 테스트를 통하여 BIM 설계 환경에 필요한 가상 머신 리소스를 산정하고 배분하는 방식을 제안하여 클라우드 컴퓨팅 기반 BIM 설계 및 BIM 설계정보를 활용 프로젝트 운영 방향을 제시하고자 한다.

데이터 접근 패턴 은닉을 지원하는 암호화 인덱스 기반 kNN 질의처리 알고리즘 (kNN Query Processing Algorithm based on the Encrypted Index for Hiding Data Access Patterns)

  • 김형일;김형진;신영성;장재우
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1437-1457
    • /
    • 2016
  • 데이터베이스 아웃소싱 환경에서, 클라우드는 인증된 사용자에게 아웃소싱된 데이터베이스를 기반으로 질의 서비스를 제공한다. 그러나 금융, 의료 정보와 같은 민감한 데이터는 클라우드에 아웃소싱 되기 전에 암호화되어야 한다. 한편, kNN 질의는 다양한 분야에서 폭넓게 사용되는 대표적인 질의 타입이며, kNN 질의 결과는 사용자의 관심사 및 선호도와 밀접하게 연관된다. 따라서 데이터 보호와 질의 보호를 동시에 고려하는 kNN 질의 처리 알고리즘에 대한 연구가 진행되어 왔다. 그러나 기존 연구는 높은 연산 비용이 요구되거나, 탐색한 인덱스의 노드 및 반환된 질의 결과가 드러나기 때문에 데이터 접근 패턴이 노출되는 문제점이 존재한다. 이러한 문제를 해결하기 위해 본 논문에서는 암호화 데이터베이스 상에서의 kNN 질의처리 알고리즘을 제안한다. 제안하는 알고리즘은 데이터 보호 및 질의 보호를 지원한다. 또한, 제안하는 알고리즘은 데이터 접근 패턴을 보호하는 동시에 효율적인 질의처리를 지원한다. 이를 위해, 데이터 접근 패턴 노출 없이 데이터 필터링을 지원하는 암호화 인덱스 탐색 기법을 제안한다. 성능 분석을 통해, 제안하는 알고리즘이 기존 기법에 비해 질의처리 시간 측면에서 우수한 성능을 보임을 검증한다.

시계열(時系列) AVHRR 위성자료(衛星資料)를 이용한 한반도 식생분포(植生分布) 구분(區分) (Vegetation Cover Type Mapping Over The Korean Peninsula Using Multitemporal AVHRR Data)

  • 이규성
    • 한국산림과학회지
    • /
    • 제83권4호
    • /
    • pp.441-449
    • /
    • 1994
  • 본 연구의 목적(目的)은 현재 한국에서 자료획득이 비교적 용이한 AVHRR 위성자료(衛星資料)를 이용하여, 한반도 전지역(全地域)을 대상으로 식물(植物)의 시기별(時期別) 변화유형(變化類型)을 분석하고, 이를 응용하여 주요식생(主要植生)의 분포를 구분하고자 한다. 1991년 1년동안 NOAA-11 위성에서 수신(受信)된 AVHRR 자료중 비교적 운량(雲量)이 적은 날을 택하여 총 27일분의 일별영상자료(日別映像資料)를 추출하였다. 일별영상자료는 먼저 광학적(光學的) 보정(補正)을 마친 후, 적색(赤色)파장대 및 근적외선(近赤外線)파장대에서의 반사특성(反射特性)을 조합한 식생지수(植生指數)(NDVI-Normalized Difference Vegetation Index)로 변환되었다. 구름으로 덮혀있는 지역의 식생지수는 식물이 존재하는 지역보다 상대적으로 낮은 값을 나타내므로, 구름제거를 위하여 4-5개의 일별식생지수자료(日別植生指數資料)를 중첩한 뒤 각 화소(畵素)지점의 식생지수중 최대치를 선택함으로써 구름의 영향이 최소화된 월별식생지수자료(月別植生指數資料)가 산출되었다. 월별식생지수자료는 식물 생장의 연중변화(年中變化)를 비교 분석하기에 용이하도록 비생장기간(非生長期間)까지 포함하여 2월, 3월, 5월, 8월, 9월, 그리고 11월까지 6개가 산출되었다. 식생별로 상이(相異)한 계절별 잎의 발달상태에 따라, 6개의 월별식생지수자료(月別植生指數資料)에 나타나는 식생지수의 변화특성을 이용하여 식생분류(植生分類)를 실시하였다. 사용된 자료의 광학적 해상력(解像力)을 고려하여 분류집단은 침엽수림, 활엽수림, 침활혼효림, 농지, 초지관목림, 그리고 도시지역으로 구분하였다. 컴퓨터분류방식은 식생지수(植生指數)의 변화유형이 비슷한 집단끼리 스스로 규합(糾合)되게 하는 무감독류집분류법(無監督類集分類法)(unsupervised clustering)을 채택하였다. 컴퓨터분류 결과를 기존의 산림자원조사자료(山林資源調査資料)와 비교한 결과 상당히 근접한 통계치를 보여주었고, 산림지역내(內)에서도 침엽수림, 활엽수림, 혼효림의 구분 또한 만족할만한 결과를 나타내고 있다. 넓은 지역을 대상으로 필요한 영상자료(映像資料)를 비교적 신속하고 용이하게 수신(受信)할 수 있고, 타(他) 위성자료에 비교하여 자료의 양이나 가격 측면에서 유리한 AVHRR자료는 한반도 규모에 상응하는 넓은 지역의 식생현황을 주기적으로 모니터링하기에 적합한 위성자료로 판단된다.

  • PDF

농작물 모니터링을 위한 점수기반 식생지수 합성기법의 개발 (Development of Score-based Vegetation Index Composite Algorithm for Crop Monitoring)

  • 김선화;은정
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1343-1356
    • /
    • 2022
  • 광학위성영상을 이용해 농작물을 모니터링 할 때 가장 문제가 되는 것은 구름이나 그림자이다. 구름과 그림자의 영향을 줄이기 위해 일정 주기동안 최대 정규식생지수를 선택하는 합성기법이 사용되었다. 그러나, 본 방법은 구름의 영향을 줄이기는 하나, 일정 주기 동안 최대 정규식생지수(Normalized Difference Vegetation Index, NDVI)값만을 사용하기 때문에 NDVI가 감소하는 현상을 신속히 보여주기 어렵다. 이에 따라, 구름의 영향을 최소화하면서 식생의 분광정보를 최대한 유지하기 위한 방안으로 합성 시 여러 환경인자를 정의하고, 이에 대한 점수를 부여하여 합성 시 가장 적합한 화소를 선택하는 방법인 점수 기반 합성기법이 제시되었다. 본 연구에서는 Sentinel-2A/B Level2A 반사율 영상과, 부가정보로 제공되는 구름, 그림자, Aerosol Optical Thickness(AOT), 촬영날짜, 센서천정각 등을 이용한 점수 기반 식생지수 합성기법을 개발하였다. 2021년동안 당진 논지역과 태백 고랭지 배추밭을 대상으로 15일 주기와 한달 주기로 점수기반 합성기법을 적용한 결과, 구름의 영향을 받은 우기만을 제외하고 15일 주기 합성 시 한달 주기에 비해 보다 빠르고 자세한 NDVI값의 변화를 볼 수 있었다. 특정 영상에서는 합성 NDVI영상에서 부분적으로 날짜별 차이가 나타나 공간적으로 이질적인 부분이 보이기도 하는데, 이는 사용한 구름, 그림자 정보의 부정확성으로 인한 것으로 사려된다. 향후 입력정보의 정확도를 향상시키고, Maximum NDVI Composite (MNC) 기반 합성기법과 정량적 비교를 수행할 예정이다.

스마트 팜을 위한 UAS 모니터링의 자연재해 작물 피해 분석 (Analysis of Crop Damage Caused by Natural Disasters in UAS Monitoring for Smart Farm)

  • 강준오;이용창
    • 한국측량학회지
    • /
    • 제38권6호
    • /
    • pp.583-589
    • /
    • 2020
  • 최근 다양한 센서 및 정보통신 기술(ICT: Information & Communications Technology)을 융합·활용한 스마트 팜을 위한 UAS (Unmanned Aerial System)의 활용성이 기대되고 있다. 특히, 다양한 지수를 통한 실외 작물 모니터링 방안으로 효용성이 입증되며 여러 분야에서 연구되고 있다. 본 연구는 벼를 대상으로 자연재해 작물 피해를 분석하고 피해량을 계측하는 것이다. 이를 위해, BG-NIR (Blue Green_near Infrared red) 및 RGB 센서를 통해 데이터를 획득하고 영상해석 및 NDWI (Normalized Difference Water Index) 지수를 활용하여 장마에 의한 작물 피해를 검토한다. 또한, 영상해석 기반 포인트 클라우드 데이터를 생성, 인스펙션 맵을 통해 태풍 전·후 데이터를 비교하여 피해량을 계측한다. 연구결과, NDWI 지수 분석을 통해 벼의 생장 및 장마 피해를 검토하였고, 인스펙션 맵 분석으로 태풍에 의한 피해 면적을 계측하였다.

정지궤도 위성자료를 이용한 지표면 도달 태양복사량 연구 (A Study on the Retrievals of Downward Solar Radiation at the Surface based on the Observations from Multiple Geostationary Satellites)

  • 지준범;조일성;이규태
    • 대한원격탐사학회지
    • /
    • 제29권1호
    • /
    • pp.123-135
    • /
    • 2013
  • 정지기상 위성의 가시채널에서 관측되는 반사도는 지상의 일사량 관측자료와 비교하여 구름량 계산이 가능하며 이를 이용하여 지표면에 도달되는 일사량을 추정할 수 있다. 기상 센서(MI)의 경우는 675 nm 파장으로 관측된 반사도를 이용하며 해양 센서(GOCI)는 기상 센서(MI)의 관측파장과 유사한 660 nm, 680 nm 파장으로 관측된 자료를 이용할 수 있다. 연구를 위하여 태풍이 있었던 흐린 날과 맑은 날을 선정하였으며 정지위성으로부터 관측된 자료들을 이용하였다. 위성영상의 반사도가 40%이상 높은 화소들은 0.3이하의 청천지수가 나타났으며 70%이상의 태양에너지가 차폐되었다. 또한 15%이하의 반사도가 나타나는 화소들은 0.9이상의 청천지수가 나타났으며 90%이상의 태양에너지가 지표면에 도달되었다. 계산된 일누적 일사량은 기상청 22개 관측소의 관측 일누적 일사량과 비교하였다. COMS와 MTSAT의 MI센서의 경우 관측값과 비교하여 다소 작게 계산되었으며 GOCI센서를 이용한 계산결과인 상관계수 0.96보다 낮은 0.94와 0.93의 상관성을 보였다. 그리고 일사량 관측값에 대한 RMSE는 MTSAT, COMS MI, GOCI순으로 2.21, 2.09, 2.02 MJ/$m^2$로 나타났다. 또한 COMS GOCI센서의 일누적 계산결과를 지상 관측자료와 비교하였을 때 흐린 날과 맑은 날의 상관성은 각각 0.96과 0.86이었으며 RMSE는 1.82 MJ/$m^2$와 2.27 MJ/$m^2$로서 흐린 날의 상관성이 높게 나타났다. COMS 위성의 해양 센서는 기상센서와 비교하여 관측시각이 한정적이고 관측의 불연속이 있으나 높은 해상도의 이점이 있기 때문에 태양에너지 분석 등의 연구에 유용할 것으로 사료된다.

Integrating UAV Remote Sensing with GIS for Predicting Rice Grain Protein

  • Sarkar, Tapash Kumar;Ryu, Chan-Seok;Kang, Ye-Seong;Kim, Seong-Heon;Jeon, Sae-Rom;Jang, Si-Hyeong;Park, Jun-Woo;Kim, Suk-Gu;Kim, Hyun-Jin
    • Journal of Biosystems Engineering
    • /
    • 제43권2호
    • /
    • pp.148-159
    • /
    • 2018
  • Purpose: Unmanned air vehicle (UAV) remote sensing was applied to test various vegetation indices and make prediction models of protein content of rice for monitoring grain quality and proper management practice. Methods: Image acquisition was carried out by using NIR (Green, Red, NIR), RGB and RE (Blue, Green, Red-edge) camera mounted on UAV. Sampling was done synchronously at the geo-referenced points and GPS locations were recorded. Paddy samples were air-dried to 15% moisture content, and then dehulled and milled to 92% milling yield and measured the protein content by near-infrared spectroscopy. Results: Artificial neural network showed the better performance with $R^2$ (coefficient of determination) of 0.740, NSE (Nash-Sutcliffe model efficiency coefficient) of 0.733 and RMSE (root mean square error) of 0.187% considering all 54 samples than the models developed by PR (polynomial regression), SLR (simple linear regression), and PLSR (partial least square regression). PLSR calibration models showed almost similar result with PR as 0.663 ($R^2$) and 0.169% (RMSE) for cloud-free samples and 0.491 ($R^2$) and 0.217% (RMSE) for cloud-shadowed samples. However, the validation models performed poorly. This study revealed that there is a highly significant correlation between NDVI (normalized difference vegetation index) and protein content in rice. For the cloud-free samples, the SLR models showed $R^2=0.553$ and RMSE = 0.210%, and for cloud-shadowed samples showed 0.479 as $R^2$ and 0.225% as RMSE respectively. Conclusion: There is a significant correlation between spectral bands and grain protein content. Artificial neural networks have the strong advantages to fit the nonlinear problem when a sigmoid activation function is used in the hidden layer. Quantitatively, the neural network model obtained a higher precision result with a mean absolute relative error (MARE) of 2.18% and root mean square error (RMSE) of 0.187%.

Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링 (Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data)

  • 김민주;현창욱
    • 대한원격탐사학회지
    • /
    • 제39권3호
    • /
    • pp.311-323
    • /
    • 2023
  • 기름 유출 사고는 발생 시 환경과 관련된 다양한 문제들을 야기하므로 신속하게 유출유의 면적과 위치 변화를 파악하는 것이 중요하다. 광학 위성자료를 활용한 기름 유출 탐지의 경우 다양한 위성탑재 센서를 통해 유출유에 대한 정보 수집 후 이를 이용하여 광범위한 기름 유출 범위를 모니터링할 수 있다. 선행 연구에서는 파장별 기름의 반사도를 분석한 후 특정 파장대의 밴드를 이용한 oil spill index가 개발 및 적용되었다. 기름 유출 모니터링을 위해 유출 전후 여러 시기의 위성자료를 분석할 경우 다량의 데이터로 인해 많은 시간과 컴퓨팅 자원이 소비된다. 웹 브라우저를 통해 대량의 위성자료 분석이 가능한 Google Earth Engine을 활용할 경우 효율적으로 기름 유출 탐지가 가능하다. 본 연구에서는 Sentinel-2 MultiSpectral Instrument 위성자료와 클라우드 기반의 위성자료 분석 플랫폼인 Google Earth Engine을 이용하여 기존에 제안된 네 종류의 oil spill index의 다양한 피복 환경에서의 활용성 평가를 수행하였다. 지표 피복별 index 값의 비교를 통해 기름 유출 영역이 타 피복과 잘 구분되는지에 대한 분리도를 평가하고 기름 유출 면적을 산정하였다. 본 연구 결과를 통해 Google Earth Engine이 기름 유출 광역 모니터링에 효율적으로 활용 가능하다는 것을 확인하였고, 복잡한 지표 피복이 분포하는 다른 지역에 기름 유출 사고 발생 시 우수한 성능으로 평가된 oil spill index B ((B3+B4)/B2)와 C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5)의 적용은 효과적인 기름 유출 모니터링에 기여할 것으로 판단된다.

행성간 충격파 발생 코로나 영역의 물리적 특성 (PHYSICAL CHARACTERISTICS OF CORONAL REGION DRIVING OUT THE INTERPLANETARY SHOCK)

  • 오수연;이유
    • Journal of Astronomy and Space Sciences
    • /
    • 제25권1호
    • /
    • pp.25-32
    • /
    • 2008
  • 태양활동 극대기인 2000년의 ACE 위성 태양풍 관측자료를 이용한 행성간 충격파의 목록에서 충격파 유도체 따라 행성간 충격파를 분류하고 충격파 유도체별 물리적 특성을 조사하였다. 51개의 행성간 충격파 중에서 대부분은 자기구름 및 Ejecta로 대표되는 ICME와 고속풍(HSS)에 의해서 유도되었다. 산소이온비(O7/O6)로부터 유도된 온도 및 Thermal index($I_{th}$ 지수) 값 분석에 따르면, ICME는 태양 코로나의 고온물질 영역으로부터 생성됨을 알 수 있다.