• Title/Summary/Keyword: Cloud Computing Architecture

Search Result 189, Processing Time 0.024 seconds

RAS: Request Assignment Simulator for Cloud-Based Applications

  • Rajan, R. Arokia Paul;Francis, F. Sagayaraj
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2035-2049
    • /
    • 2015
  • Applications deployed in cloud receive a huge volume of requests from geographically distributed users whose satisfaction with the cloud service is directly proportional to the efficiency with which the requests are handled. Assignment of user requests based on appropriate load balancing principles significantly improves the performance of such cloud-based applications. To study the behavior of such systems, there is a need for simulation tools that will help the designer to set a test bed and evaluate the performance of the system by experimenting with different load balancing principles. In this paper, a novel architecture for cloud called Request Assignment Simulator (RAS) is proposed. It is a customizable, visual tool that simulates the request assignment process based on load balancing principles with a set of parameters that impact resource utilization. This simulator will help to ascertain the best possible resource allocation technique by facilitating the designer to apply and test different load balancing principles for a given scenario.

A Owner's Privacy Preserving Protocol for u-Fitness-based Exercise Management in Cloud Computing (클라우드 컴퓨팅에서 u-Fitness 기반 운동 관리를 위한 소유자의 프라이버시를 보장하는 프로토콜)

  • Kim, Tae-yeon;Cho, Ki-hwan;Choi, Eun-Bok
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.21-28
    • /
    • 2017
  • There is growing interest in the use of cloud services these days because the amount of sensitive physical information related to u-fitness-based exercise management increase in explosive. However, it is possible to illegally access information stored in a cloud server, and to find out who owns the information, even, to illegally deduce an association among the information stored in its memory. The cloud server may also intentionally pass over the owner's legitimate operation requests such as modification and deletion of stored information, and may lose or damage information due to its malfunction. So, it is strongly required to solve the above problems because we can not trust the cloud server entirely. In this paper, we propose a protocol to preserve the privacy of the owner for u-Fitness-based exercise management in a cloud computing environment. And we show that our proposed architecture is applicable in real environment through security analysis and performance analysis.

A 2-Tier Server Architecture for Real-time Multiple Rendering (실시간 다중 렌더링을 위한 이중 서버 구조)

  • Lim, Choong-Gyoo
    • Journal of Korea Game Society
    • /
    • v.12 no.4
    • /
    • pp.13-22
    • /
    • 2012
  • The wide-spread use of the broadband Internet service makes the cloud computing-based gaming service possible. A game program is executed on a cloud node and its live image is fed into a remote user's display device via video streaming. The user's input is immediately transmitted and applied to the game. The minimization of the time to process remote user's input and transmit the live image back to the user and thus satisfying the requirement of instant responsiveness for gaming makes it possible. However, the cost to build its servers can be very expensive to provide high quality 3D games because a general purpose graphics system that cloud nodes are likely to have for the service supports a single 3D application at a time. Thus, the server must have a technology of 'realtime multiple rendering' to execute multiple 3D games simultaneously. This paper proposes a new architecture of 2-tier servers of clouds nodes of which one group executes multiple games and the other produces game's live images. It also performs a few experimentations to prove the feasibility of the new architecture.

Vehicular Cyber-Physical Systems for Smart Road Networks

  • Jeong, Jaehoon Paul;Lee, Eunseok
    • Information and Communications Magazine
    • /
    • v.31 no.3
    • /
    • pp.103-116
    • /
    • 2014
  • This paper proposes the design of Vehicular Cyber-Physical Systems (called VCPS) based on vehicular cloud for smart road networks. Our VCPS realizes mobile cloud computing services where vehicles themselves or mobile devices (e.g., smartphones and tablets of drivers or passengers in vehicles) play a role of both cloud server and cloud client in the vehicular cloud. First, this paper describes the architecture of vehicular networks for VCPS and the delay modeling for the event prediction and data delivery, such as a mobile node's travel delay along its navigation path and the packet delivery delay in vehicular networks. Second, the paper explains two VCPS applications as smart road services for the driving efficiency and safety through the vehicular cloud, such as interactive navigation and pedestrian protection. Last, the paper discusses further research issues for VCPS for smart road networks.

Cloud Radio Access Network: Virtualizing Wireless Access for Dense Heterogeneous Systems

  • Simeone, Osvaldo;Maeder, Andreas;Peng, Mugen;Sahin, Onur;Yu, Wei
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.135-149
    • /
    • 2016
  • Cloud radio access network (C-RAN) refers to the virtualization of base station functionalities by means of cloud computing. This results in a novel cellular architecture in which low-cost wireless access points, known as radio units or remote radio heads, are centrally managed by a reconfigurable centralized "cloud", or central, unit. C-RAN allows operators to reduce the capital and operating expenses needed to deploy and maintain dense heterogeneous networks. This critical advantage, along with spectral efficiency, statistical multiplexing and load balancing gains, make C-RAN well positioned to be one of the key technologies in the development of 5G systems. In this paper, a succinct overview is presented regarding the state of the art on the research on C-RAN with emphasis on fronthaul compression, baseband processing, medium access control, resource allocation, system-level considerations and standardization efforts.

Cloudboard: A Cloud-Based Knowledge Sharing and Control System (클라우드보드: 클라우드 기반 지식 공유 및 제어 시스템)

  • Lee, Jaeho;Choi, Byung-Gi;Bae, Jae-Hyeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.3
    • /
    • pp.135-142
    • /
    • 2015
  • As the importance of software to society has grown, more and more schools worldwide teach coding basics in the classroom. Despite the rapid spread of coding instruction in grade schools, experience in the classroom is certainly limited because there is a gap between the curriculum and the existing computing environment such as the mobile and cloud computing. We propose an approach to fill this gap by using a mobile environment and the robot on the cloud-based platform for effective teaching. In this paper, we propose an architecture called Cloudboard that enables knowledge sharing and collaboration among knowledge providers in the cloud-based robot platforms. We also describe five representative architectural patterns that are referenced and analyzed to design the Cloudboard architecture. Our early experimental results show that the Cloudboard can be effective in the development of collective robotic systems.

Global Manager - A Service Broker In An Integrated Cloud Computing, Edge Computing & IoT Environment

  • Selvaraj, Kailash;Mukherjee, Saswati
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1913-1934
    • /
    • 2022
  • The emergence of technologies like Big data analytics, Industrial Internet of Things, Internet of Things, and applicability of these technologies in various domains leads to increased demand in the underlying execution environment. The demand may be for compute, storage, and network resources. These demands cannot be effectively catered by the conventional cloud environment, which requires an integrated environment. The task of finding an appropriate service provider is tedious for a service consumer as the number of service providers drastically increases and the services provided are heterogeneous in the specification. A service broker is essential to find the service provider for varying service consumer requests. Also, the service broker should be smart enough to make the service providers best fit for consumer requests, ensuring that both service consumer and provider are mutually beneficial. A service broker in an integrated environment named Global Manager is proposed in the paper, which can find an appropriate service provider for every varying service consumer request. The proposed Global Manager is capable of identification of parameters for service negotiation with the service providers thereby making the providers the best fit to the maximum possible extent for every consumer request. The paper describes the architecture of the proposed Global Manager, workflow through the proposed algorithms followed by the pilot implementation with sample datasets retrieved from literature and synthetic data. The experimental results are presented with a few of the future work to be carried out to make the Manager more sustainable and serviceable.

Optimization of Data Placement using Principal Component Analysis based Pareto-optimal method for Multi-Cloud Storage Environment

  • Latha, V.L. Padma;Reddy, N. Sudhakar;Babu, A. Suresh
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.248-256
    • /
    • 2021
  • Now that we're in the big data era, data has taken on a new significance as the storage capacity has exploded from trillion bytes to petabytes at breakneck pace. As the use of cloud computing expands and becomes more commonly accepted, several businesses and institutions are opting to store their requests and data there. Cloud storage's concept of a nearly infinite storage resource pool makes data storage and access scalable and readily available. The majority of them, on the other hand, favour a single cloud because of the simplicity and inexpensive storage costs it offers in the near run. Cloud-based data storage, on the other hand, has concerns such as vendor lock-in, privacy leakage and unavailability. With geographically dispersed cloud storage providers, multicloud storage can alleviate these dangers. One of the key challenges in this storage system is to arrange user data in a cost-effective and high-availability manner. A multicloud storage architecture is given in this study. Next, a multi-objective optimization problem is defined to minimise total costs and maximise data availability at the same time, which can be solved using a technique based on the non-dominated sorting genetic algorithm II (NSGA-II) and obtain a set of non-dominated solutions known as the Pareto-optimal set.. When consumers can't pick from the Pareto-optimal set directly, a method based on Principal Component Analysis (PCA) is presented to find the best answer. To sum it all up, thorough tests based on a variety of real-world cloud storage scenarios have proven that the proposed method performs as expected.

Design of Efficient Edge Computing based on Learning Factors Sharing with Cloud in a Smart Factory Domain (스마트 팩토리 환경에서 클라우드와 학습된 요소 공유 방법 기반의 효율적 엣지 컴퓨팅 설계)

  • Hwang, Zi-on
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2167-2175
    • /
    • 2017
  • In recent years, an IoT is dramatically developing according to the enhancement of AI, the increase of connected devices, and the high-performance cloud systems. Huge data produced by many devices and sensors is expanding the scope of services, such as an intelligent diagnostics, a recommendation service, as well as a smart monitoring service. The studies of edge computing are limited as a role of small server system with high quality HW resources. However, there are specialized requirements in a smart factory domain needed edge computing. The edges are needed to pre-process containing tiny filtering, pre-formatting, as well as merging of group contexts and manage the regional rules. So, in this paper, we extract the features and requirements in a scope of efficiency and robustness. Our edge offers to decrease a network resource consumption and update rules and learning models. Moreover, we propose architecture of edge computing based on learning factors sharing with a cloud system in a smart factory.

A Survey on 5G Enabled Multi-Access Edge Computing for Smart Cities: Issues and Future Prospects

  • Tufail, Ali;Namoun, Abdallah;Alrehaili, Ahmed;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.107-118
    • /
    • 2021
  • The deployment of 5G is in full swing, with a significant yearly growth in the data traffic expected to reach 26% by the year and data consumption to reach 122 EB per month by 2022 [10]. In parallel, the idea of smart cities has been implemented by various governments and private organizations. One of the main objectives of 5G deployment is to help develop and realize smart cities. 5G can support the enhanced data delivery requirements and the mass connection requirements of a smart city environment. However, for specific high-demanding applications like tactile Internet, transportation, and augmented reality, the cloud-based 5G infrastructure cannot deliver the required quality of services. We suggest using multi-access edge computing (MEC) technology for smart cities' environments to provide the necessary support. In cloud computing, the dependency on a central server for computation and storage adds extra cost in terms of higher latency. We present a few scenarios to demonstrate how the MEC, with its distributed architecture and closer proximity to the end nodes can significantly improve the quality of services by reducing the latency. This paper has surveyed the existing work in MEC for 5G and highlights various challenges and opportunities. Moreover, we propose a unique framework based on the use of MEC for 5G in a smart city environment. This framework works at multiple levels, where each level has its own defined functionalities. The proposed framework uses the MEC and introduces edge-sub levels to keep the computing infrastructure much closer to the end nodes.