• Title/Summary/Keyword: Clothing surface temperature

Search Result 146, Processing Time 0.033 seconds

The Effect of L-cysteine, EDTA in Papain Treatment of Wool Fabrics (양모직물에 파파인 처리 시 L-cysteine, EDTA의 영향)

  • Sung, Jong-Mi;Song, Wha-Soon;Kim, In-Young
    • Textile Coloration and Finishing
    • /
    • v.20 no.2
    • /
    • pp.9-18
    • /
    • 2008
  • Wool has excellent properties, such as heat retention, absorbency, and elasticity, but it has a disadvantage in washability because the fabric will felt and shrink greatly. Felting causes the interlocking of the fiber surface scales with one another. Therefore, the studies on wool finishing have been focused on shrink proofing. Precedent researches on wool shrink proofing are mostly on eco-friendly method. using enzyme. The purpose of this study is to examine the effect of L-cysteine, EDTA in papain treatment of wool fabrics. The specific contents of study are as follows. Depending on pH, temperature, treatment time, enzyme concentration and L-cysteine, EDTA concentration, weight loss, tensile strength, whiteness, SEM were examined. Each papain treatment conditions depending on L-cysteine, EDTA were optimized from these properties. Papain had very low activation without activators. The optimum conditions of papain treatment were pH 7.5, temperature $75^{\circ}C$, time 30minutes(L-cysteine), 180minutes(EDTA) and papain concentration 5%(o.w.f.). In the use of papain 5%(o.w.f.), the activators optimum concentration was L-cysteine 2%(o.w.f.), EDTA 7%(o.w.f.)

Thermal Insulation of Protective Clothing Materials in Extreme Cold Conditions

  • Mohamed Zemzem;Stephane Halle;Ludwig Vinches
    • Safety and Health at Work
    • /
    • v.14 no.1
    • /
    • pp.107-117
    • /
    • 2023
  • Background: Thermophysiological comfort in a cold environment is mainly ensured by clothing. However, the thermal performance and protective abilities of textile fabrics may be sensitive to extreme environmental conditions. This article evaluated the thermal insulation properties of three technical textile assemblies and determined the influence of environmental parameters (temperature, humidity, and wind speed) on their insulation capacity. Methods: Thermal insulation capacity and air permeability of the assemblies were determined experimentally. A sweating-guarded hotplate apparatus, commonly called the "skin model," based on International Organization for Standardization (ISO) 11092 standard and simulating the heat transfer from the body surface to the environment through clothing material, was adopted for the thermal resistance measurements. Results: It was found that the assemblies lost about 85% of their thermal insulation with increasing wind speed from 0 to 16 km/h. Under certain conditions, values approaching 1 clo have been measured. On the other hand, the results showed that temperature variation in the range (-40℃, 30℃), as well as humidity ratio changes (5 g/kg, 20 g/kg), had a limited influence on the thermal insulation of the studied assemblies. Conclusion: The present study showed that the most important variable impacting the thermal performance and protective abilities of textile fabrics is the wind speed, a parameter not taken into account by ISO 11092.

Thermal Signature Characteristics of Clothed Human Considering Thermoregulation Effects (체온 조절 작용을 고려한 의복 착용 시의 인체 열상신호 특성 분석)

  • Chang, Injoong;Bae, Ji-Yeul;Lee, Namkyu;Kwak, Hwykuen;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.109-116
    • /
    • 2019
  • Survivability of soldiers has been greatly threatened by the development of thermal observation device(TOD). Therefore, infrared, especially thermal, stealth technology is applied to combat suit to avoid detection from TOD. In this study, prior to the thermal camouflage performance evaluation of combat suit, thermal signature characteristic from clothed the human body was analyzed considering the realistic condition for human surface temperature compared to that from unclothed human body. To get the realistic surface temperature distribution of human, thermoregulation and multi-layer skin structure model is applied to the human model. Based on temperature distribution, surface diffuse radiance in thermal range is calculated and by assuming the background conditions, contrast radiance intensity(CRI) characteristic of human body is analyzed. By wearing clothing, the CRI between background and human body became reduced in low emissive background but in high emissive background, the contrast is much more prominent. Therefore, this issue should be considered in design process of thermal camouflage combat suit.

Characteristics and Dyeing Properties of Arrowroot Leaves Colors (칡잎 색소의 특성과 염색성에 관한 연구)

  • Cho Kyung Rae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.3 s.39
    • /
    • pp.281-288
    • /
    • 1991
  • Optical behaviors and dyeing properties of color solution extracted from arrowroot leaves were investigated. The wavelength of maximum absorption of the color solution appeared at 268 and 320 nm, respectively. The amount of colors extracted was increased with extracting temperature and time. Spectra of color solution are shifted to longer wavelength at higher pH values, and shifted to shorter wavelength by irradiation for 2 hrs. Remaining ratio of colors by irradiation decreased with increasing alkalinity of color solution. Degree of exhaustion on the silk fabrics was related to the concentration and pH of dyebath. Surface color of dyed fabrics, lightfastness and wash-fastness were variously according to mordant used. Hot water resistance and drycleaning fastness of dyed silk fabrics by treatment of mordants were all within commercially acceptable limits.

  • PDF

A Study on Bedclimate, Physiological Responces and Subjective Sensations of Bedquilts During Sleeping on Ondol in Summer (여름철 온돌에서 취침시 이불종류에 따른 침상기후와 인체반응 연구)

  • Kweon Soo Ae;Lee Soon Won;Choi Jeong Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.3 s.43
    • /
    • pp.285-298
    • /
    • 1992
  • In this study, bedclimate was investigated depending on various bedquilts used oin ondol in summer. The environmental room condition was maintained at 26: $1^{\circ}C,\;75{\pm}3\%$ R.H., while the ondol surface was kept at $25{\pm}1^{\circ}C$ without heating. The types of bedquilts were hemp, cotton, quilt made of polyester padding with polyester/cotton cover. Two healthy young women were subjected for seven hours' sleep with two replications for this study. The results are as follows. 1) The range of the temperature under the mattress ($25.2\~32.4^{\circ}C$) was lower than that of the temperature on the mattress ($28.8\~35.5^{\circ}C$), or that of the temperature inside the bedquilts ($30.3\~34.4^{\circ}C$). The humidity inside the bedquilts increased during sleeping, and the range of R.H. was $58\~80\%$. 2) The ranges of bedclimate which subjects feel comfortable were $30.5\~33.8^{\circ}C$ on the mattress, $31.0\~34.9^{\circ}C$, $61\~74\%$ R.H. inside the bedquilts. At this range, the mean skin temper-ature of the subjects was $34.3^{\circ}C\~35.2^{\circ}C$. 3) When there was no heating, the weight of the bedding increased during sleeping, and the weight increase was largest in the case of mattress. 4) There were correlations among the skin temperature of three points of the body (abdomen, thigh, foot) and the temperature and R.H. inside the bedquilt. 5) The effect of the type of bedquilts on the microclimate and physiolosical responses were significant. 6) Generally, when there was no heating, the body heat was transferred to the ondol floor, in summer, heat was transferred mostly through the mattress.

  • PDF

Wear Evaluation of Protective Mask according to Internal Volume (보호마스크의 내부 부피에 따른 착용 평가)

  • Eom, Ran-i;Park, Sunhee;Park, Soyoung;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.4
    • /
    • pp.626-638
    • /
    • 2020
  • In this study, protective masks were designed in varying internal volume and analyzed in regards to wearing effect. Masks were measured by surface temperature and subjective wear evaluation. Four experimental masks were created with an increasing distance between the mask center line and nose in increments. The distances were set at 0.0 cm (M0), 2.0 cm (M2), 4.0 cm (M4), and 6.0 cm (M6). The area and volume of each experimental mask was measured and both measurements had a positive correlation with the set distances. Among the experimental masks, M2 was the most breathable. The heat between the face and the mask created by exhalation was able to escape from the mask and provided the highest comfort sensation when worn. Conversely, an internal volume that is too large would decrease its comfort because repetitive breathing deforms the appearance of the mask and adversely affects its fit. Therefore, creating and maintaining the optimal internal volume of the M2 mask is important to achieve maximum thermal sensation and ease of wear.

Variation of Human Thermal Radiation Characteristics Applying Different Clothing Materials (의복 소재 변경에 따른 인체 열상신호 변화 특성)

  • Chang, Injoong;Bae, Ji-Yeul;Lee, Namkyu;Kwak, Hwykuen;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.644-653
    • /
    • 2019
  • With the development of themal observatory device(TOD), thermal camouflage system has been applied not only to the weapon system but also to the combat suit for soldiers. In this paper, the characteristic of thermal radiation of human body depending on the clothing material properties was analyzed through numerical simulations. The bioheat equation with thermoregulatory model was solved to obtain the realistic surface temperature of human body and these results are combined with the emissivity of human skin and clothing in order to calculate the thermal signature from the human body. According to each thermal resistance of clothing, the optimal background radiance which makes contrast radiance intensity(CRI) be lowest is different. Also, the average CRI variation per thermal resistance change is about twice as much as the case of evaporative resistance change.

Influence to give to a performance evaluation and sunlight reflection properties of the building crustal material (건물외피 재료의 성능평가와 일사반사 특성에 미치는 영향)

  • Sang, Hie-Sun;Kwak, Sung-Gun;Lee, Jeung-Seok;Yoshida, Atsumada
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.177-186
    • /
    • 2011
  • We can expect reduction of the sunlight absorption quantity to a structure and an earth surface, a decline of the surface temperature and a decline of the heat transport volume in what there is a method I give the sunlight reflectance in the aspect to the surface of the building by painting sunlight high reflectance paint, and to reduce the sunlight absorption quantity to a structure and an earth surface and does so, and, in addition, a method high water retentivity of tree planting and the road surface of the city space uses evaporation latent heat of the water by making it, and to restrain a rise in temperature is thought about. and It is thought that I reduce the sunlight absorption quantity to not only the structure but also other structures and attention gathers to the reflexive reflector reflecting in the direction again and it is wide as a marker of a board and the clothing of the traffic sign and is used the incidence energy from a source of light for this reflexive reflector now by there is it and devises surface structure again, and controlling reflection directivity for the sunlight for the purpose of raising night visibility.

  • PDF

The Analysis of the Painting Work Clothes Clothing Comfort and Wearer Mobility Considering the Work Environment in the Machine and Shipbuilding Industries

  • Park, Gin-Ah;Park, Hye-Won;Bae, Hyun-Sook
    • Journal of Fashion Business
    • /
    • v.16 no.3
    • /
    • pp.13-31
    • /
    • 2012
  • The purpose of the study was to analyze the work clothes' clothing comfort and wearer mobility of painting workers with the consideration of the work environment features in the machine and shipbuilding industries in South Korea. A questionnaire survey was conducted for the study, which consisted of questions on the clothing comfort and wearer mobility aspects of painting work clothes by clothes types and body parts. The work clothes' clothing comfort and wearer mobility levels were scaled in 5 points i.e. 1(: very tight/very uncomfortable) to 5(: very slack/very comfortable). The painting work environmental hazardous features were considered as high impact levels of workplace temperature, oxygen deficiency, organic solvent, toxic gas factors while metal fragment factor only impacts 'low' in the painting processes with the findings throughout this study. Since the painting work consisted of surface washing and the spray and touch-up painting processes, which was carried out in an outdoor work place, the painting work clothes should meet high performance of waterproofing from the painting material and air permeability specially in summer as well as thermal performance in winter. The subjects painting workers' assessment of the existing work clothes' clothing oppression was in the levels between 3 (i.e. moderate) and 4 (i.e. comfortable) in a range of 1 to 5 points. The existing painting work clothes' wearer mobility was evaluated 'very uncomfortable' in all work clothes parts, especially, armhole length, biacromial breadth, sleeve length of the jumper; and body rise, waist, hip, thigh and knee circumferences of the pants.

Infrared Image Simulation for Estimating the Effectiveness of Camouflage Measures (표적은폐도구의 유용도 평가를 위한 적외선화상 모사)

  • Jung, Jinsoo;Kauh, S. Ken;Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1010-1021
    • /
    • 1999
  • Camouflage measures in military purpose utilize the apparent temperature difference between target and background, so it is essential to develop a thermal analysis program for apparent temperature predictions and to apply some camouflage measures to real military targets for camouflage purpose. In this study, a thermal analysis program including conduction, convection and radiation is developed and the validity of radiation heat transfer terms is examined. The results show that longwave radiation along with solar radiation should be included in order to predict the apparent temperature as well as the physical temperature precisely. Longwave emissivity variation as an effective camouflage measures is applied to a real M2 tank. From the simulation results, it is found that an effective surface treatment, such as painting of a less emissive material or camouflage clothing, may provide a temperature similarity or a spatial similarity, resulting in an effective camouflage.