• Title/Summary/Keyword: Closure model

Search Result 481, Processing Time 0.02 seconds

Analysis of Flow Field in a Steam Turbine Bypass Valve (증기터빈 바이패스밸브 케이지 유동장 해석관한 연구)

  • Choi Ji-Yong;Cho An-Tai;Kim Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.4 s.37
    • /
    • pp.36-42
    • /
    • 2006
  • In the present work, characteristics of the flow in the cage of a steam turbine bypass control valve for thermal power plant are investigated. Experimental measurement for wall static pressure has been carried out to validate numerical solutions. And, the flowfield is analyzed by solving steady three-dimensional Reynolds-averaged Navier-Stokes equations. Shear stress transport (SST) model is used as turbulence closure. The effects of the flow area between stages of the cage on the pressure drop are also found.

FLOW ANALYSIS AND PERFORMANCE EVALUATION OF HIGH PRESSURE DOUBLE STAGE RING BLOWER (고압 이단 링블로워의 삼차원 유동해석 및 성능평가)

  • Lee, K.D.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.85-89
    • /
    • 2007
  • In the present work, flow analysis has been performed for side channel type double stage ring blower by solving three-dimensional Reynolds-averaged Navier-Stokes equation. Shear stress transport model is used as turbulent closure. The commercial CFD code CFX 11.0 is used for the calculations. Each of two stage is calculated separately and the second stage inlet flow is same as the first stage outlet flow so that consecutive calculation is possible. Velocity and pressure fields have been analyzed at the mid-plane between blades. The numerical results are validated with experimental data for head coefficients at different flow coefficients.

Unsteady Transient Flowfield in an Integrated Rocket Ramjet Engine (램제트 엔진의 비정상 천이 유동에 관한 연구)

  • H.K. Sung;Vigor Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.74-92
    • /
    • 2000
  • A numerical analysis has been conducted to study the transient flowfield during the transition from the booster to sustainer phase in an integrated rocket ramjet (IRR) propulsion system. Emphasis is placed on the unsteady inlet aerodynamics, fuel/air mixing in an entire ramjet engine during the flow transient phase. The computational geometry consists of the entire IRR engine, including the inlet, the combustion chamber, and the exhaust nozzle. Turbulence closure is achieved using a low-Reynolds-number two-equation model. The governing equations are solved numerically by means of a finite-volume, preconditioned flux-differencing scheme over a wide range of Mach umber. Various important physical processes are investigated systemically, including terminal shock train.

  • PDF

The Effects of Mean-Line Shape on Longitudinal Stablility of a Wing in Ground Effect

  • Kim, Wu-Joan;Shin, Myung-Soo
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.14-23
    • /
    • 1996
  • The Reynolds-averaged Navier-Stokes equations for turbulent flow around a two-dimensional foil section moving ova. a flat surface (roller plate) is solved. The numerical method utilized the finite-difference schemes in collocated grids and the Baldwin-Lomax model is employed for turbulence closure. Calculations are carried out for three foil sections of different mean-line shape with various height ratio. As a foil approaches the bottom surface, the lift is augmented, while there exist some differences in pitching moment due to mean-line shape. It was found that the S-shaped mean line deteriorates lift characteristics but increases pitching moment to restore the designed height.

  • PDF

Deformation Behavoirs of Arched Openings Related with Roof Curvature (천반 곡률반경에 따른 아치형 공동의 변형거동에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.10-18
    • /
    • 1996
  • Arched openings are generally excavated in underground construction works. Since stress distribution around openings depends on geological structure in rock mass, any shape of arched openings fully conformed with in-situ stress condition should be recommended to maintain mechanical safety of structures. Shape of arched openings is specified by both roof curvature and height-width ratio, and especially this report presents deformation behaviors related with roof curvature. Scale model tests and numerical studies of various shaped openings are conducted, where rectangular opening shows the greatest convergence. Through the anlayses of various arched opengings, as radius of roof curvature is increased, roof lowering and sidewall closure are remarkably increased, whereas floor heaving is increased little by little. By the way, it is useful that displacements of openings are roughly estimated in the stage of preliminary investigation. To find out elastic displacements of arched openings with any roof curvature, regressional formula and charts by least square method are represented. In addition elastoplastic deformation behavoirs of arched openings concerning associated adn non-associated flow rule are discussed.

  • PDF

Stochastic along-wind response of nonlinear structures to quadratic wind pressure

  • Floris, Claudio;de Iseppi, Luca
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.423-440
    • /
    • 2002
  • The effects of the nonlinear (quadratic) term in wind pressure have been analyzed in many papers with reference to linear structural models. The present paper addresses the problem of the response of nonlinear structures to stochastic nonlinear wind pressure. Adopting a single-degree-of-freedom structural model with polynomial nonlinearity, the solution is obtained by means of the moment equation approach in the context of It$\hat{o}$'s stochastic differential calculus. To do so, wind turbulence is idealized as the output of a linear filter excited by a Gaussian white noise. Response statistical moments are computed for both the equivalent linear system and the actual nonlinear one. In the second case, since the moment equations form an infinite hierarchy, a suitable iterative procedure is used to close it. The numerical analyses regard a Duffing oscillator, and the results compare well with Monte Carlo simulation.

School closures during the coronavirus disease 2019 outbreak

  • Cho, Eun Young;Choe, Young June
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.7
    • /
    • pp.322-327
    • /
    • 2021
  • School closures during the coronavirus disease 2019 (COVID-19) pandemic have been outlined in studies from different disciplines, including economics, sociology, mathematical modeling, epidemiology, and public health. In this review, we discuss the implications of school closures in the context of the current COVID-19 pandemic. Modeling studies of the effects of school closures, largely derived from the pandemic influenza model, on severe acute respiratory syndrome coronavirus 2 produced conflicting results. Earlier studies assessed the risk of school reopening by modeling transmission across schools and communities; however, it remains unclear whether the risk is due to increased transmission in adults or children. The empirical findings of the impact of school closures on COVID-19 outbreaks suggest no clear effect, likely because of heterogeneity in community infection pressure, differences in school closure strategies, or the use of multiple interventions. The benefits of school closings are unclear and not readily quantifiable; however, they must be weighed against the potential high social costs, which can also negatively affect the health of this generation.

Two-fluid modelling for poly-disperse bubbly flows in vertical pipes: Analysis of the impact of geometrical parameters and heat transfer

  • Andrea Allio ;Antonio Buffo ;Daniele Marchisio;Laura Savoldi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1152-1166
    • /
    • 2023
  • The bubbly flow of air or steam in subcooled water are investigated here in several test cases, characterized by different pipe sizes, bubble dimensions and flow rates, by means of CFD using a Eulerian-Eulerian approach. The performance of models that differ for the turbulence closure in the continuous phase, as well as for the description of the lift force on the dispersed phase, are compared in detail. When air is considered, the space of the experimental parameters leading to a reasonable performance for the selected models are identified and discussed, while the issues left in the modelling of the concurrent condensation are highlighted for the cases where steam is used.

PICTURE PROCESSING ON ISOMETRIC FUZZY REGULAR ARRAY LANGUAGES

  • A. JOHN KASPAR;D.K. SHEENA CHIRISTY;D.G. THOMAS
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.3
    • /
    • pp.483-497
    • /
    • 2024
  • Isometric array grammar is one of the simplest model to generate picture languages, since both sides of its production rule have the same shape. In this paper, we have introduced isometric fuzzy regular array grammars to generate isometric fuzzy regular array languages and discussed its closure properties. Also, the relation between isometric fuzzy regular array grammar and boustrophedon fuzzy finite automata has been discussed. Moreover, we study the relation between two dimensional fuzzy regular grammars with returning fuzzy finite automata and boustrophedon fuzzy finite automata. Further, the hierarchy results of these three classes of languages have been discussed.

NUMERICAL MODELLING OF SHEET-FLOW TRANSPORT UNDER WAVE AND CURRENT

  • Bakhtiary, Abbas-Yeganeh;Hotoshi Gotoh;Tetsuo Sakai
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.75-84
    • /
    • 2002
  • An Euler-Lagrange two-phase flow model is presented fur simulation sheet-flow transport under wave and current. The flow is computed by solving the Reynolds Averaged Navier-Stokes equation in conjunction with the k-$\varepsilon$ turbulence model for turbulence closure. The sediment transport is introduced as a motion of granular media under the action of unsteady flow from the Lagragian point of view. In other word, motion of every single particle is numerically traced with Movable Bed Simulator (MBS) code based on the Distinct Element Method (DEM), in which the frequent interparticle collision of the moving particles during the sheet-flow transport is sophisticatedly taken into account. The particle diameter effect on time-dependent developing process of sheet-flow transport is investigated, by using three different diameter sizes of sediment. The influence of an imposed current on oscillatory sheet-flow transport is also investigated. It is concluded that the sediment transport rate increases due to the relaxation process related to the time-lag between flow velocity and sediment motion.

  • PDF