• 제목/요약/키워드: Closure model

검색결과 481건 처리시간 0.023초

Horn-type Rudder 주위의 2 차원 난류유동 해석 (Analysis of Two-Dimensional Turbulent Flow around the Horn-type Rudder)

  • 정남균
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.924-931
    • /
    • 2009
  • The two-dimensional turbulent flow around the horn-type rudder has been examined in the present study by using the commercial code FLUENT. The standard ${\kappa}-{\epsilon}$ model is used as a closure relationship. The geometry of horn rudder is based on the NACA 0020 airfoil. The simulations for various angle attack (${\alpha}$) and yaw angle(${\delta}$) are carried out. The effect of Reynolds number is also investigated in this study. The cavitation is more possible when the yaw angle is $6^{\circ}$ and it is more serious as Reynolds number increases.

축대칭 엔진 실린더내의 유동장에 관한 수치적 연구 (A Numerical Study on In-cylinder Flow Fields of an Axisymmetric Engine)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.662-670
    • /
    • 1999
  • A numerical prediction was performed to clarify the air motion in the cylinder of an axisymmet-ric four-stroke reciprocating engine at its intake and compression stage. A scheme of finite volume method is used for the calculation. Modified $k-{\varepsilon}$ turbulence model is adopted and wall function is applied to the grids near the wall. The predicted mean velocity and rms velocity profiles showed a reasonable agreement with an available experimental data at its intake and compression stage. The predicted in-cylinder flow fields show that a strong turbulent twin vortex structure is pro-duced during induction but it commences to decay rapidly around inlet valve closure. The mean velocity continues to fall to a low level during compression but the turbulence intensity attains an approximate constant level.

  • PDF

초음속 불완전 팽창 난류 제트 유동에 관한 수치적 연구 (Numerical Analysis for Under- or Over- Expanded Supersonic Turbulence Jet Flow)

  • 김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.85-89
    • /
    • 1999
  • Numerical Analysis has been done for the supersonic off-design jet flow due to the pressure difference between the jet and the ambient fluid. The difference of pressure generates an oblique shock or an expansion wave at the nozzle exit, The waves reflect repeatedly at the center axis and on the sonic surface in the shear layer, and the pressure difference is resolved across these waves interacted with the turbulence mixing layer. In this paper, the axi-symmetric Navier-Stokes equation has been used with two equation $k-{\varepsilon}$ turbulence closure model. The second order TVD scheme with flux limiters, based on the flux vector split by the smooth eigenvalue split, has been used to capture internal shocks and other discontinuities. The correction term for the compressible flow and the damping function are used in the turbulence model. Numerical calculations have been done to analyze the off-design jet flow due to the pressure difference. The variation of pressure along the flow axis is compared with an experimental result and other numerical result. The characteristics of the interaction between the shock cell and the turbulence mixing layer have been analyzed.

  • PDF

원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석 (Numerical Analyses of Three-Dimensinal Thermo-Fluid Flow through Mixing Vane in A Subchannel of Nuclear Reactor)

  • 최상철;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.79-87
    • /
    • 2002
  • The present work analyzed the effect of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly, by obtaining velocity and pressure fields, turbulent intensity, flow-mixing factors, heat transfer coefficient and friction factor using three-dimensional RANS analysis. NJl5, NJ25, NJ35, NJ45, which were designed by the authors, were tested to evaluate the performances in enhancing the heat transfer. Standard $\kappa-\epsilon$ model is used as a turbulence closure model, and, periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant, but the twist angle of mixing vane is changed. The results with three turbulence models( $\kappa-\epsilon$, $\kappa-\omega$, RSM) were compared with experimental data.

  • PDF

NACA16-020 익형의 단면을 갖는 날개 끝 와류 현상에 대한 3 차원 난류유동 해석 (Three-Dimensional Analysis of the Turbulent Wingtip Vortex Flows of a Wing with NACA 16-020 Airfoil Section)

  • 정남균
    • 대한기계학회논문집B
    • /
    • 제33권8호
    • /
    • pp.635-642
    • /
    • 2009
  • The three-dimensional turbulent wingtip vortex flows have been examined in the present study by using the commercial code FLUENT. The standard ${\kappa}-{\varepsilon}$ model is used as a closure relationship. The wing is constructed by using an elliptic body whose aspect ratio is 3.8 and the NACA 16-020 airfoil section. The simulations for various angle attack (${\alpha}=0^{\circ}$, $5^{\circ}$, and $10^{\circ}$) are carried out. The effect of Reynolds number is also investigated in this study. As the angle attack increases, the wingtip vortex becomes stronger. However, the relative vortex strength to inlet velocity decreases as Reynolds number increases.

냉각효율 향상을 위한 경사진 리브의 형상최적설계 (Shape optimization of angled ribs to enhance cooling efficiency)

  • 김홍민;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.627-630
    • /
    • 2003
  • This work presents a numerical procedure to optimize the shape of three-dimensional channel with angled ribs mounted on one of the walls to enhance turbulent heat transfer. The response surface method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of flow and heat transfer. SST turbulence model is used as a turbulence closure. The width-to-height ratio of the rib, rib height-to-channel height ratio, pitch-to-rib height ratio and attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related terms with weighting factor. D-optimal experimental design method is used to determine the data points. Optimum shapes of the channel have been obtained for the weighting factors in the range from 0.0 to 1.0.

  • PDF

표면균열의 피로성장거동연구 -인장 반복 하중하에서의 균열형상비 예측- (A Study on the Fatigue Growth Behavior of Surface Cracks -Prediction of Crack Aspect Ratio under the Constant Amplitude Tension Fatigue Loads-)

  • 최용식;양원호;김재원
    • 오토저널
    • /
    • 제12권2호
    • /
    • pp.43-50
    • /
    • 1990
  • The fatigue growth behavior of surface cracks cannot be adequately predicted solely by stress intensity factor analysis. This is caused by different plastic deformation due to variations in the stress field triaxiality along the crack tip. Therefore, a new model which accounts for the crack closure phenomenon is proposed in this paper to predict the fatigue crack growth patterns for surface cracks. Fatigue tests were performed to develop the new model for the prediction and to assess the accuracy of the analysis. The predicted crack growth behavior for PMMA and Aluminum alloy 7075-T6 materials agreed well with the experimental data.

  • PDF

A cohesive model for concrete mesostructure considering friction effect between cracks

  • Huang, Yi-qun;Hu, Shao-wei
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.51-61
    • /
    • 2019
  • Compressive ability is one of the most important mechanical properties of concrete material. The compressive failure process of concrete is pretty complex with internal tension, shear damage and friction between cracks. To simulate the complex fracture process of concrete at meso level, methodology for meso-structural analysis of concrete specimens is developed; the zero thickness cohesive elements are pre-inserted to simulate the crack initiation and propagation; the constitutive applied in cohesive element is established to describe the mechanism of crack separation, closure and friction behavior between the fracture surfaces. A series of simulations were carried out based on the model proposed in this paper. The results reproduced the main fracture and mechanical feature of concrete under compression condition. The effect of key material parameters, structure size, and aggregate content on the concrete fracture pattern and loading carrying capacities was investigated. It is found that the inner friction coefficient has a significant influence on the compression character of concrete, the compression strength raises linearly with the increase of the inner friction coefficient, and the fracture pattern is sensitive to the mesostructure of concrete.

조류와 충격파가 혼재한 해역의 3차원적 수리특성 분석 (Identifying Three-Dimensional Hydraulic Characteristics of the Sea Region Under Combined Tidal Current and Shock Waves)

  • 강민구
    • 대한토목학회논문집
    • /
    • 제29권4B호
    • /
    • pp.339-346
    • /
    • 2009
  • 본 연구에서는 조류와 충격파가 혼재한 해역의 흐름 특성을 3차원 수치모형(Princeton Ocean Model, POM)을 사용하여 파악하였다. 1994년에 완공된 시화방조제의 끝막이 공사 동안 개방구간과 그 주변 해역의 흐름을 모의하기 위하여 POM 모형을 선정하였다. 모의결과는 큰 내 외수위차와 적은 통수단면적으로 인해 발생한 충격파가 창조시와 낙조시에 각각 방조제 내측과 외해로 전파되는 것으로 나타났다. 또한, 충격파 주변에서 흐름분리가 발생하며, 충격파가 개방구간을 통과한 후 더 넓은 지역으로 퍼짐에 따라 충격파의 조류에 대한 영향은 약화되는 것으로 나타났다. 흐름의 종방향 유속분포는 충격파의 영향을 받는 것으로 밝혀졌다. 또한, 낙조시 개방구간 전방에서 수위강하가 발생했으며, 내외수위차가 가장 큰 모의조건에서는 도수현상이 발생하였다. 따라서 충격파가 지배적인 해역의 흐름 특성을 파악하기 위해서는 3차원적 수리해석이 필요하며, 해석결과는 대상해역에서 수행되는 해상공사 및 시설물 관리에 필요한 정보를 제공할 것으로 기대된다.

수평평판위 의 혼합대류 열전말 계산 을 위한 4-방정식 모델 의 개발 (Development of four-equation turbulence model for prediction of mixed convective heat transfer on a flat plate)

  • 성형진;정명균
    • 대한기계학회논문집
    • /
    • 제7권2호
    • /
    • pp.193-203
    • /
    • 1983
  • The mixed convective heat transfer problems are characterized by the relatively significant contribution of buoyancy force to the transport processes of momentum and heat. Past analytical studies on this kind of problems have been carried out by employing either the conventional R-.epsilon. turbulence model which includes constant turbulent Prandtl number .sigma.$_{+}$ 1 or an extended R-.epsilon. turbulence model which takes account of the buoyancy effect in appropriate length scale equations. But in the latter case, the temperature variance .the+a.$^{2}$ over bar is approximated by a model under local equilibrium condition and the time scale ratio between velocity and temperature is assumed to be constant. These approximation is known to break down when the buoyancy effect is dominant. The present study is aimed at development of new computational turbulence closure level which can be applied to this rather complex turbulent process. The temperature variance is obtained directly by solving its dynamic transport equation and the time scale ratio which is variable in space is computed by a solution of a dynamic equation for the rate of scalar dissipation .epsilon.$_{\thetod}$ It was found that the computational results are in good agreement with available experimental data of wide range of unstable conditions.