• Title/Summary/Keyword: Closure Phase

Search Result 91, Processing Time 0.022 seconds

STATUS AND PERSPECTIVE OF TWO-PHASE FLOW MODELLING IN THE NEPTUNE MULTISCALE THERMAL-HYDRAULIC PLATFORM FOR NUCLEAR REACTOR SIMULATION

  • BESTION DOMINIQUE;GUELFI ANTOINE;DEN/EER/SSTH CEA-GRENOBLE,
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.511-524
    • /
    • 2005
  • Thermalhydraulic reactor simulation of tomorrow will require a new generation of codes combining at least three scales, the CFD scale in open medium, the component scale and the system scale. DNS will be used as a support for modelling more macroscopic models. NEPTUNE is such a new generation multi-scale platform developed jointly by CEA-DEN and EDF-R&D and also supported by IRSN and FRAMATOME-ANP. The major steps towards the next generation lie in new physical models and improved numerical methods. This paper presents the advances obtained so far in physical modelling for each scale. Macroscopic models of system and component scales include multi-field modelling, transport of interfacial area, and turbulence modelling. Two-phase CFD or CMFD was first applied to boiling bubbly flow for departure from nucleate boiling investigations and to stratified flow for pressurised thermal shock investigations. The main challenges of the project are presented, some selected results are shown for each scale, and the perspectives for future are also drawn. Direct Numerical Simulation tools with Interface Tracking Techniques are also developed for even smaller scale investigations leading to a better understanding of basic physical processes and allowing the development of closure relations for macroscopic and CFD models.

THE STUDY OF THE EFFECT OF DENTAL ARCH FORM ON CHEWING MOVEMENT III. THE RELATIONSHIP BETWEEN THE DENIAL ARCH FORM AND THE CHEWING MOVEMENT (저작운동에 미치는 치열궁형태의 영향에 관한 연구 III. 치열궁형태와 저작운동과의 관련성에 대하여)

  • Jo Byung-Woan;Kim Jong-Pil;Chang Heun-Soo;Aha Sang-Hun;Ahn Jae-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.4
    • /
    • pp.565-572
    • /
    • 1994
  • According to the classification of dental arch form and the analysis of patterns of chewing movement, the patterns of chewing movement in each group were evaluated and compared with those of the normal group. Results were summarized as follows ; 1. Opening phase in chewing movement In the group which the maxillary second molar positionsbuccal side, the chewing patterns which have the Vertical Guide Openings in frontal plane, the Posterior Guide Openings in hjorizontal plane were observed. In the group which the maxillary premolars position lingual side, the chewing paterns which have the Protrusive Shift Openings in horizontal plane and sagittal plane were observed. 2. Closing phase in chewing movement. In each group except for the normal group, the chewing patterns which have the Concave Closure in frontal plane and in Horizontal plane were observed. In the group which the maxillary premolars position buccal side, the chewing patterns which have the Lateral Guide Closure in frontal plane and in horizontal plane, the Vertical Guide Closre in sagittal plane were observed: From the results, as the characteristics of the dental arch form have appeared in chewing movement, the close relationships were found between dental arch form and chewing movement. It is suggested that the evaluation of dental arch form is effective in the diagnosis of function of stomatognathic system.

  • PDF

Unsteady Transient Flowfield in an Integrated Rocket Ramjet Engine (램제트 엔진의 비정상 천이 유동에 관한 연구)

  • H.K. Sung;Vigor Yang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.74-92
    • /
    • 2000
  • A numerical analysis has been conducted to study the transient flowfield during the transition from the booster to sustainer phase in an integrated rocket ramjet (IRR) propulsion system. Emphasis is placed on the unsteady inlet aerodynamics, fuel/air mixing in an entire ramjet engine during the flow transient phase. The computational geometry consists of the entire IRR engine, including the inlet, the combustion chamber, and the exhaust nozzle. Turbulence closure is achieved using a low-Reynolds-number two-equation model. The governing equations are solved numerically by means of a finite-volume, preconditioned flux-differencing scheme over a wide range of Mach umber. Various important physical processes are investigated systemically, including terminal shock train.

  • PDF

Open-Loop Responses of Droplet Vaporization to Linear Normal Acoustic Modes

  • Kim, S.Y.;W.S. Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.155-164
    • /
    • 2004
  • In order for studying pressure-coupled dynamic responses of droplet vaporization, open-loop experiment of an isolated droplet vaporization exposed to pressure perturbations in stagnant gaseous environment is numerically conducted, Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous nitrogen. Results show that wave instability in view of pressure-coupled vaporization response seems more susceptible at higher pressures and higher wave frequencies. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Augmentation of perturbation frequency also enhances amplification due to the reduction of phase differences between pressure perturbation and surface temperature fluctuation.

  • PDF

Two-fluid modelling for poly-disperse bubbly flows in vertical pipes: Analysis of the impact of geometrical parameters and heat transfer

  • Andrea Allio ;Antonio Buffo ;Daniele Marchisio;Laura Savoldi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1152-1166
    • /
    • 2023
  • The bubbly flow of air or steam in subcooled water are investigated here in several test cases, characterized by different pipe sizes, bubble dimensions and flow rates, by means of CFD using a Eulerian-Eulerian approach. The performance of models that differ for the turbulence closure in the continuous phase, as well as for the description of the lift force on the dispersed phase, are compared in detail. When air is considered, the space of the experimental parameters leading to a reasonable performance for the selected models are identified and discussed, while the issues left in the modelling of the concurrent condensation are highlighted for the cases where steam is used.

Influence of Vapor Phase Turbulent Stress to the Onset of Slugging in a Horizontal Pipe (기체상의 난류 응력이 수평 유동관 내에서의 Slugging에 미치는 영향에 관한 연구)

  • Park, Jee-Won
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.45-52
    • /
    • 1995
  • In influence of the vapor phase turbulent stress (i.e., the too-phase Reynolds stress) to the characteristics of two-phase system in a horizontal pipe has been theoretically investigated. The average two-fluid model has been constituted with closure relations for stratified flow in a horizontal pipe. A vapor phase turbulent stress model for the regular interface geometry has been included. It is found that the second order waves propagate in opposite direction with almost the same speed in the moving frame of reference of the liquid phase velocity. Using the well-posedness limit of the two-phase system, the dispersed-stratified How regime boundary has been modeled. Two-phase Froude number has been found to be a convenient parameter in quantifying the onset of slugging as a function of the global void fraction. The influence of the taper phase turbulent stress was found to stabilize the flow stratification.

  • PDF

Numerical Analysis of Nonlinear Shoaling Process of Random Waves - Centered on the Evolution of Wave Height Distribution at the Varying Stages of Shoaling Process (불규칙 파랑 비선형 천수 과정 수치해석 - 천수 단계별 파고분포 변화를 중심으로)

  • Kim, Yong Hee;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.106-121
    • /
    • 2020
  • In order to make harbor outskirt facilities robust using the reliability-based design, probabilistic models of wave heights at varying stage of shoaling process optimized for Korean sea waves are prerequisite. In this rationale, we numerically simulate the nonlinear shoaling process of random waves over the beach with a sandbar at its foreshore. In doing so, comprehensive numerical models made of spatially filtered Navier-Stokes Eq., LES [Large Eddy Simulation], dynamic Smagorinsky turbulence closure were used. Considering the characteristics of swells observed at the east coast of Korean Peninsula, random waves were simulated using JONSWAP wave spectrum of various peak enhancement coefficients and random phase method. The coefficients of probabilistic models proposed in this study are estimated from the results of frequency analysis of wave crests and its associated trough detected by Wave by Wave Analysis of the time series of numerically simulated free surface displacements based on the threshold crossing method. Numerical results show that Modified Glukhovskiy wave height distribution, the most referred probabilistic models at finite water depth in the literature, over-predicts the occurring probability of relatively large and small wave heights, and under predicts the occurrence rate of waves of moderate heights. On the other hand, probabilistic models developed in this study show vary encouraging agreements. In addition, the discrepancy of the Modified Glukhovskiy distribution from the measured one are most visible over the surf zone, and as a result, the Modified Glukhovskiy distribution should be applied with caution for the reliability-based design of harbor outskirt facilities deployed near the surf-zone.

Unsteady Vaporization of Burning Droplet at High Pressure Environments With Linear Acoustic Mode (강한 음향장에 구속된 고압 액적의 연소)

  • Kim, Sung-Yup;Shin, Hyun-Ho;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1122-1127
    • /
    • 2004
  • an isolated droplet combustion exposed to pressure perturbations in stagnant gaseous environment is numerically conducted. Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous air. Results show that the operating pressure and driving frequency have an important role in determining the amplitude and phase lag of a combustion response. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Phase difference between pressure and evaporation rate decreases due to the reduced thermal inertia at high pressure. In addition to this, augmentation of perturbation frequency also enhances amplification of vaporization rate because the time period for the pressure oscillation is much smaller than the liquid thermal inertia time. The phase of evaporation rate shifts backward due to the elevated thermal inertia at high acoustic frequency.

  • PDF

AE Characteristics of Fatigue Crack Opening and Closure in Structural Aluminum Alloy (구조용 알루미늄 합금에서의 피로균열 열림 및 닫힘 시 AE 발생특성 연구)

  • Jeong, Jung-Chae;Park, Phi-Lip;Kim, Ki-Bok;Lee, Seung-Seok;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.155-169
    • /
    • 2002
  • The objective of this study was to investigate the effect of crack opening and closure in the AE activities during fatigue test. Laboratory experiment using various materials and test conditions were carried out to identify AE characteristics of fatigue crack propagation. Compact tension specimens of 2024-T4 and 6061-T6 aluminum alloy were prepared for fatigue test. AE activities were analyzed based on the phase of the loading cycle. Generally, most of AE were generated when the crack begins' opening and the crack closes fully, whereas a few in the pull opening of the crack. Also AE activity in the peak loading of cycle was different with each specimen. However, in the same material, AE activity was not affected by the change of cyclic frequency (0.1, 0.2, 1.0Hz). It was found that AE activities during crack opening and closure depend on material properties such as micro-structure, tensile strength and yield strength.

Modeling of unilateral effect in brittle materials by a mesoscopic scale approach

  • Pituba, Jose J.C.;Neto, Eduardo A. Souza
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.735-758
    • /
    • 2015
  • This work deals with unilateral effect of quasi-brittle materials, such as concrete. For this propose, a two-dimensional meso-scale model is presented. The material is considered as a three-phase material consisting of interface zone, matrix and inclusions - each constituent modeled by an appropriate constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes randomly placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements developed here in order to capture the effects of phase debonding and interface crack closure/opening. As an initial approximation, the inclusion is modeled as linear elastic as well as the matrix. Our main goal here is to show a computational homogenization-based approach as an alternative to complex macroscopic constitutive models for the mechanical behavior of the quasi-brittle materials using a finite element procedure within a purely kinematical multi-scale framework. A set of numerical examples, involving the microcracking processes, is provided. It illustrates the performance of the proposed model. In summary, the proposed homogenization-based model is found to be a suitable tool for the identification of macroscopic mechanical behavior of quasi-brittle materials dealing with unilateral effect.