• Title/Summary/Keyword: Closed-loop structure

Search Result 230, Processing Time 0.027 seconds

Characteristics of the Flux-lock Type Superconducting Fault Current Limiter According to the Iron Core Conditions (자속구속형 초전도 전류제한기의 철심조건에 따른 특성)

  • Nam, Gueng-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Cho, Guem-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.38-45
    • /
    • 2006
  • The superconducting fault current limiters(SFCLs) provide the effect such as enhancement in power system reliability due to limiting the fault current within a few miliseconds. Among various SFCLs we have developed a flux-lock type SFCL and exploited a special design to effectively reduce the fault current according to properly adjustable magnetic field after the short-circuit test. This SFCL consists of two copper coils wound in parallel on the same iron core and a component using the YBCO thin film connected in series to the secondary copper coil. Meanwhile, operating characteristics can be controlled by adjusting the inductances and the winding directions of the coils. To analyze the operational characteristics, we compared closed-loop with open-loop iron core. When the applied voltage was 200[Vrms] in the additive polarity winding, the peak values of the line current the increased up to 30.71[A] in the closed-loop and 32.01[A] in the open-loop iron core, respectively. On the other hand, in the voltages generated at current limiting elements were 220.14[V] in the closed-loop and 142.73[V] in the opal-loop iron core during first-half cycle after fault instant under the same conditions. We confirmed that the open-loop iron core had lower power burden than in the closed-loop iron core. Consequently, we found that the structure of iron core enabled the flux-lock type SFCL at power system to have the flexibility.

Data fusion based improved HOSM observer for smart structure control

  • Arunshankar, J.
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.257-266
    • /
    • 2019
  • The benefit of data fusion in improving the performance of Higher Order Sliding Mode (HOSM) observer is brought out in this paper. This improvement in the performance of HOSM observer, resulted in the improvement of active vibration control of a piezo actuated structure, when controlled by a Discrete Sliding Mode Controller (DSMC). The structure is embedded with two piezo sensors for measuring the first two vibrating modes. The fused output of sensors is applied to the HOSM observer for generating state estimates, these states generated are applied to the DSMC, designed for the fourth order linear time invariant model of the structure. In the simulation study, the structure is excited at the first and second mode resonance. It is found that better vibration suppression is obtained, when the states generated by the fused output of sensors is applied as controller input, than the vibration suppression obtained by applying the states generated by using individual sensor output. The closed loop performance of DSMC obtained with HOSM observer is compared with the closed loop performance obtained with the conventional observer. Results obtained shows that better vibration suppression is obtained when the states generated by HOSM observer is applied as controller input.

A Study on an Engine Control System using an Object Oriented Programming Method (객체지향 프로그래밍 기법을 이용한 엔진제어시스템에 관한 연구)

  • 윤팔주;이상준;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.98-109
    • /
    • 2000
  • A new PC-based Engine Control system (ECS) is developed using an object oriented programming method. This system provides more convenient environment for engine tests, easier user interface and extended functions. A Windows-based ECS software is developed with class, and the class structure is built on encapsulation and abstraction. The closed-loop engine control scheme can be easily constructed by using dynamic link library and multitasking. This means that a user can perform desired experiments without clear knowledge of the hardware structure of the ECS. Also this system allows a user to individually control the ignition and fuel injection for each cylinder in a simple manner such as through a keyboard/mouse or in a real-time operation from a closed-loop control program.

  • PDF

A Loop Configuration Algorithm Considering Constraints in Distribution System (제약 조건을 고려한 배전 계통 루프 구성 알고리즘)

  • Cho, Bo-Hyeon;Cho, Sung-Min;Park, Jin-Hyun;Sin, Hee-Sang;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper, we focused on the loop distribution system to solve the international issues of energy depletion and global warming. The conventional method of reconfiguration of distribution system was moving open points of switches from an actual switch position to another, while an appropriate switch must be opened to preserve the radial structure and this procedure is continued til there is no further loss reduction. However, the loop distribution system is the best optimization method to minimize loss than the other methods which is preserving radial structure. So we analyzed 3 types of loop distribution system upgraded from radial distribution system by changing normally open switch to normally closed switch. The simple 3 types of model system for simulation were composed, and each types of loop system were simulated in accordance with varying parameters. As a result of simulations, the loss reduction was different for each types of loop distribution system and each loop types have constraints for composing loop distribution system. The algorithms propose the method how to construct loop distribution system regarding constraints. Type I that needs least requirements get least loss reduction and Type III that needs most requirements get maximum loss reduction. On the other hand, Type I was most feasible distribution system to be realized.

An Electromechanical ${\sum}{\triangle}$ Modulator for MEMS Gyroscope

  • Chang, Byung-Su;Sung, Woon-Tahk;Lee, Jang-Gyu;Kang, Tea-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1701-1705
    • /
    • 2004
  • This paper presents a design and analysis of electromechanical sigma-delta modulator for MEMS gyroscope, which enables us to control the proof mass and to obtain an exact digital output without additional A/D conversion. The system structure and the circuit realization of the sigma-delta modulation are simpler than those of the analog sensing and feedback circuit. Based on the electrical sigma-delta modulator theory, a compensator is designed to improve the closed loop resolution of the sensor. With the designed compensator, we could obtain enhanced closed-loop performances of the gyroscope such as larger bandwidth, lower noise, and digital output comparing with the results of analog open-loop system.

  • PDF

Vibration Control of Hvbrid Smart Structure Using PZT Patches and ER Fluids (PZT와 ER유체를 적용한 복합지능구조물의 진동제어)

  • Yun, Shin-Il;Park, Keun-Hyo;Han, Sang-Bo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.734-739
    • /
    • 2003
  • Many types of smart materials and control laws are available to actively adjust the structure from various external disturbances. Usually, a certain type of control laws to activate a specific smart material is well established, but the effectiveness of the control scheme is limited by the choice of the smart materials and the responses of the structure. ER fluid is adequate to provide relatively large control force, on the other hand, the PZT patches are suitable to provide small but arbitrary control forces at any point along the structure. It was found that active vibration control mechanism using ER fluid failed to suppress the excitation off the resonant frequency with changed structural characteristics along the frequency response function of the closed loop of the control system. To compensate this additional peak of the closed loop system, PPF control using PZT as an actuator is added to construct a hybrid controller.

  • PDF

Experimental Study on Heat Exchange Efficiency of Combined Well & Open-Closed Loops Geothermal System (지하수정호와 결합한 복합지열시스템의 열교환 효율에 대한 실험적 연구)

  • Song, Jae-Yong;Lee, Geun-Chun;Park, Namseo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.5
    • /
    • pp.43-50
    • /
    • 2018
  • The temperature of underground water generally remains constant regardless of the season. therefore, it is possible to get plenty of energy if we use characteristics of underground water for both cooling and heating. This study evaluates efficiency of real size coaxial and U-tube type complex geothermal system which is combined with underground water well. This study also evaluates relative efficiency/adaptability through comparison with existing geothermal systems(vertical closed loop system, open loop system(SCW)). The heat exchange capacity of complex geothermal system according to temperature difference between circulating water and underground water shows very high significance by increasing proportionally. The temperature change of underground water according to injection energy, shows very high linear growth aspect as injection thermal volume heightens. As a result of evaluation of heat exchange volume between complex geothermal system and comparative geothermal system, coaxial type has 26.1 times greater efficiency than comparative vertical closed type and 2.8 times greater efficiency than SCW type. U-tube type has 26.5 tims greater efficiency than comparative vertical closed type and 2.8 times greater than SCW type as well. This means complex geothermal system has extremely outstanding performance.

Design of Low Order Cascade Controller to Reduce the Effects of Its Zeros (제어기 영점의 영향을 감소시키는 종속형 저차 제어기의 설계)

  • Kim, Young-Chol;Kim, Jae-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1048-1057
    • /
    • 2008
  • This paper represents a design method for PID or low-order controllers cascaded with a linear plant in the unit feedback system where it is required to meet the given time response specifications such as overshoot and settling time. This problem is difficult to solve because the zeros of the controller appear in the numerator of the overall system and thus those zeros may make the time response design difficult. In this paper, we propose a new approach based on the partial model matching and the so called K-polynomial. The partial matching problem is formulated to an optimization problem in which a quadratic function of coefficient errors between a target model and the resulting closed loop system is minimized. For the sake of satisfying the closed loop stability, a set of quadratic constraints associated with the cost function is introduced. As a result, the controller designed meets both time response requirements and the closed loop stability, if any. It is shown through several examples that the present method can be easily applied to these problems.

Novel Control of a Modular Multilevel Converter for Photovoltaic Applications

  • Shadlu, Milad Samady
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.103-110
    • /
    • 2017
  • The number of applications of solar photovoltaic (PV) systems in power generation grids has increased in the last decade because of their ability to generate efficient and reliable power in a variety of low installation in domestic applications. Various PV converter topologies have therefore emerged, among which the modular multilevel converter (MMC) is very attractive due to its modularity and transformerless features. The modeling and control of the MMC has become an interesting issue due to the extremely large expansion of PV power plants at the residential scale and due to the power quality requirement of this application. This paper proposes a novel control method of MMC which is used to directly integrate the photovoltaic arrays with the power grid. Traditionally, a closed loop control has been used, although circulating current control and capacitors voltage balancing in each individual leg have remained unsolved problem. In this paper, the integration of model predictive control (MPC) and traditional closed loop control is proposed to control the MMC structure in a PV grid tied mode. Simulation results demonstrate the efficiency and effectiveness of the proposed control model.

Gain Optimization of Kinematic Control for Wire-driven Surgical Robot with Layered Joint Structure Considering Actuation Velocity Bound (와이어로 구동하는 적층형 다관절 구조를 지닌 수술 로봇의 구동 속도를 고려한 기구학적 제어기의 게인 최적화)

  • Jin, Sangrok;Han, Seokyoung
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.212-220
    • /
    • 2020
  • This paper deals with a strategy of gain optimization for the kinematic control algorithm of a wire-driven surgical robot. The proposed controller consists of the closed-loop inverse kinematics with the back-calculation method. The closed-loop inverse kinematics has 18 PID control gains, and the back-calculation method has 6 gains. An efficient strategy is designed to optimize 18 values first and then the remaining 6 values. The optimal gain sets are searched under the step input with performance indices. In this gain optimization, the objective function is defined as the minimum value of signal-to-noise ratio of the performance indices for 6 DoF (Degree-of-Freedom) motion that is based on the Taguchi method, and the constraints are applied to obtain stable responses for each motion evenly. The gain sets obtained are verified by simulations using the test trajectories. In comparative results, the optimal gain value based on the performance index combined with ISE (integral of square error) and settling time showed the best control performance.