• 제목/요약/키워드: Closed-loop simulation

검색결과 560건 처리시간 0.022초

수치 해석을 통한 자기 베어링 시스템의 모델링에 관한 연구 (A Study on Modeling for the Magnetic Bearing System by Numerical Analysis)

  • 심성효;최명수;김창화;문덕홍;양주호
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.53-60
    • /
    • 2001
  • This paper considers a modeling for the MIMO magnetic bearing system. The rotor is flexible and has a complex shape. To obtain the nominal plant transfer functions, we perform a numerical analysis by using the finite element method(F.E.M.) for the rotor's dynamics, and make a nominal model by reducing the modes from the results. And, we have experimented on the frequency response by a closed-loop identification method, and compared it with the simulation's result on the closed-loop control system.

  • PDF

유압 굴삭기용 시뮬레이터 개발 및 응용 (Development and Application of Simulator for Hydraulic Excavator)

  • 임태형;양순용
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.142-148
    • /
    • 2006
  • Hydraulic excavators have been popular devices in construction fields because of their multi-workings and economic efficiency. The mathematical models of excavators have many nonlinearities because of opening characteristics and dead zone of main control valve(MCV), oil temperature variation, etc. The objective of this paper is to develop a simulator for hydraulic excavator using AMESim. Components and their circuits are expressed graphically. Also, parameters and nonlinear characteristics are considered in a text style. From the simulation results, fixed spring stiffness of MCV can not obtain the satisfactory accuracy of spool displacement under whole P-Q diagrams. Closed loop type MCV containing a proportional gain, is proposed in this paper that can reduce displacement error. The ability of closed loop MCV is verified through comparing with normal type MCV using AMESim simulator. The excavator simulator can be used to forecast the attachment behaviors when components, mechanical attachments and hydraulic circuits change, or other control algorithms are applied. The simulator could be a kind of development platform for new excavators.

신경회로망을 이용한 폐회로 현가장치의 시스템 모델링 (An Emphirical Closed Loop Modeling of a Suspension System using a Neural Networks)

  • 김일영;정길도;노태수;홍동표
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.384-388
    • /
    • 1996
  • The closed-loop system modeling of an Active/semiactive suspension system has been accomplished through an artificial neural Networks. The 7DOF full model as the system equation of motion has been derived and the output feedback linear quadratic regulator has been designed for the control purpose. For the neural networks training set of a sample data has been obtained through the computer simulation. A 7DOF full model with LQR controller simulated under the several road conditions such as sinusoidal bumps and the rectangular bumps. A general multilayer perceptron neural network is used for the dynamic modeling and the target outputs are feedback to the input layer. The Backpropagation method is used as the training algorithm. The modeling of system and the model validation have been shown through computer simulations.

  • PDF

CAD/CAM/CAI 통합에 기초한 자유곡면의 On-Machine Measurement : I. 측정오차 모델링 (On-Machine Measurement of Sculptured Surfaces Based on CAD/CAM/CAI Integration : I. Measurement Error Modeling)

  • 조명우;이세희;서태일
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.172-181
    • /
    • 1999
  • The objective of this research is to develop a measurement error model for sculptured surfaces in On-Machine Measurement (OMM) process based on a closed-loop configuration. The geometric error model of each axis of a vertical CNC Machining center is derived using a 4${\times}$4 homogeneous transformation matrix. The ideal locations of a touch-type probe for the scupltured surface measurement are calculated from the parametric surface representation and X-, Y- directional geometric errors of the machine. Also, the actual coordinates of the probe are calculated by considering the pre-travel variation of a probe and Z-directional geometric errors. Then, the step-by-step measurement error analysis method is suggested based on a closed-loop configuration of the machining center including workpiece and probe errors. The simulation study shows the simplicity and effectiveness of the proposed error modeling strategy.

  • PDF

유전알고리즘을 적용한 NCPP기반의 기계선정 방법 (An integrated process planning system through machine load using the genetic algorithm under NCPP)

  • 최회련;김재관;노형민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.612-615
    • /
    • 2002
  • The objective of this study is to develop an integrated process planning system which can flexibly cope with the status changes in a shop floor by utilizing the concept of Non-Linear and Closed-Loop Process Planning(NCPP). In this paper, Genetic Algorithm(GA) is employed in order to quickly generate feasible setup sequences for minimizing the makespan and tardiness under an NCPP. The genetic algorithm developed in this study for getting the machine load utilizes differentiated mutation rate and method in order to increase the chance to avoid a local optimum and to reach a global optimum. Also, it adopts a double gene structure for the sake of convenient modeling of the shop floor. The last step in this system is a simulation process which selects a proper process plan among alternative process plans.

  • PDF

Multimachine Stabilizer using Sliding Mode Observer-Model Following including CLF for Measurable State Variables

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권4호
    • /
    • pp.53-58
    • /
    • 1997
  • In this paper, the power system stabilizer(PSS) using the sliding mode observer-model following(SMO-MF) with closed-loop feedback (CLF) for single machine system is extended to multimachine system. This a multimachine SMO-MF PSS for unmeasureable plant state variable is obtained by combining the sliding mode-model following(SM-MF) including closed-loop feedback(CLF) with the full-order observer(FOO). And the estimated control input for unmeasurable plant sate variables is derived by Lyapunov's second method to determine a control input that keeps the system stable. Time domain simulation results for the torque angle and for the angular velocity show that the proposed multimachine SMO-MF PSS including CLF for unmeasurable plant sate variables is able to damp out the low frequency oscillation and to achieve asymptotic tracking error between the reference model state at different initial conditions and at step input.

  • PDF

비병치 유연계의 시간지연 이산제어 (Time Delay Control of Noncolocated Flexible System in z-Domain)

  • 강민식
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1089-1098
    • /
    • 1992
  • 본 연구에서는 이산제어 관점에서 비병치제어를 고려한다. 연소시간계에서 많은 장점을 가진 병치제어는 이산시간계로 변환되면 샘플링과 홀딩에서 야기되는 시 간지연 요소때문에 그 특성이 달라진다.따라서 본 논문에서는 연속시간계에서 제안 된 시간지연을 갖는 비병치제어를 이산시간계로 확장하고 제어기 설계 방법을 제시코 저 한다.

Robust Predictive Feedback Control for Constrained Systems

  • Giovanini, Leonardo;Grimble, Michael
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권4호
    • /
    • pp.407-422
    • /
    • 2004
  • A new method for the design of predictive controllers for SISO systems is presented. The proposed technique allows uncertainties and constraints to be concluded in the design of the control law. The goal is to design, at each sample instant, a predictive feedback control law that minimizes a performance measure and guarantees of constraints are satisfied for a set of models that describes the system to be controlled. The predictive controller consists of a finite horizon parametric-optimization problem with an additional constraint over the manipulated variable behavior. This is an end-constraint based approach that ensures the exponential stability of the closed-loop system. The inclusion of this additional constraint, in the on-line optimization algorithm, enables robust stability properties to be demonstrated for the closed-loop system. This is the case even though constraints and disturbances are present. Finally, simulation results are presented using a nonlinear continuous stirred tank reactor model.

폐루프 유압 에너지 회생 시스템에 관한 연구 (Design and Assessments of a Closed-loop Hydraulic Energy-Regenerative System)

  • 호 치엣 흥;윤종일;안경관
    • 유공압시스템학회:학술대회논문집
    • /
    • 유공압시스템학회 2010년도 춘계학술대회
    • /
    • pp.116-125
    • /
    • 2010
  • In this study, a novel hydraulic energy-regenerative system was presented from its proposal through its modeling to its control. The system was based on a closed-loop hydrostatic transmission and used a hydraulic accumulator as the energy storage system in a novel configuration to recover the kinetic energy without any reversion of the fluid flow. The displacement variation in the secondary unit was reduced, which widened the uses of several types of hydraulic pump/motors for the secondary unit. The proposed system was modeled based on its physical attributes. Simulation and experiments were performed to evaluate the validity of the employed mathematical model and the energy recovery potential of the system. The experimental results indicated that the round trip recovery efficiency varied from 22% to 59% for the test bench.

  • PDF

부정합조건 불확실성과 외란을 갖는 비선형 시스템을 위한 비선형 적분형 슬라이딩 면을 갖는 새로운 강인한 가변구조제어기 (A New Robust Variable Structure Controller With Nonlinear Integral-Type Sliding Surface for Uncertain More Affine Nonlinear Systems with Mismatched Uncertainties and Disturbance)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1295-1301
    • /
    • 2010
  • In this note, a systematic general design of a new robust nonlinear variable structure controller based on state dependent nonlinear form is presented for the control of uncertain affine nonlinear systems with mismatched uncertainties and mismatched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear variable structure controller is presented. To be linear in the closed loop resultant dynamics, the nonlinear integral-type sliding surface is applied. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the nonlinear integral-type sliding surface, which will be investigated in Theorem 1. Through a design example and simulation studies, the usefulness of the proposed controller is verified.