• Title/Summary/Keyword: Closed Cooling Water

Search Result 64, Processing Time 0.03 seconds

A Numerical Study on Performance Characteristics of a Closed Circuit Cooling Tower with Multi Paths (멀티패스 밀폐식 냉각탑의 성능특성에 대한 수치적 연구)

  • Kim, Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.528-533
    • /
    • 2008
  • A closed circuit cooling tower having high temperature of cooling water and small water flow rate is investigated. To study the characteristics of the heat transfer of heat exchanges in a cooling tower with multi paths a numerical method is used. The results show that the staggered tube arrangements in a bank show better performance than aligned ones for temperature variation with various outer diameters of tube bundles. In case of one pass, the 15.88 mm tube case shows about 9% better performance than the 25.4 mm tube case. In two paths, the tube outside diameter of 15.88 mm show about 14.4% better results than the 25.4 mm diameter case.

A Study on Entering Water Temperature in Vertical Closed Ground Loop System Considering the Economical Feasibility in Load of the Office Building (사무시설에 수직형 지열원 냉 난방시스템의 경제성을 고려한 인입온도(EWT)에 관한 연구)

  • Lee, Byung-Doo;Lee, Dae-Woo;Lee, Se-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.579-585
    • /
    • 2009
  • Recently, Vertical-Closed Loop system using geothermal which is the most efficient among the building cooling and heating systems is coming into wide spread due to assistance of domestic policies. However, there is a limitation that a design of ground heat exchanger taking 60% of construction cost is done by GLD and GLHEPRO programs without specific guidelines and consideration on Entering Water Temperature(EWT). For getting an optimal EWT, we analyzed the costs for construction of ground heat exchanger and cooling and heating for 15 years. In the results, reduction of construction costs as the length of ground heat exchanger shortens was much greater than increase of the electrical power consumption as COP gets low. EWT that COP of heat pump can be 3.76 or above was below $31^{\circ}C$ in cooling and was over $5^{\circ}C$ in heating.

  • PDF

Parametric analyses for the design of a closed-loop passive containment cooling system

  • Bang, Jungjin;Hwang, Ji-Hwan;Kim, Han Gon;Jerng, Dong-Wook
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1134-1145
    • /
    • 2021
  • A design parameter study is presented for the closed-loop type passive containment cooling system (PCCS) which is equipped with two heat exchangers: one installed at the inside of the containment and the other submerged in the water pool at the outside of the containment. A GOTHIC code model for PCCS performance analyses was set up and the design parameters such as the heat exchanger sizes, locations, and water pool tank volumes were analyzed to investigate the feasibility of installing this type of PCCS in PWRs like OPR-1000 being operated in Korea. We identified the size of the circulation loop and heat exchangers as major design parameters affecting the performance of PCCS. The analyses showed that the heat exchangers in the inside of the containment would be more influential on the heat removal capability of PCCS than that installed in the water pool at the outside of the containment. Hence, it was recommended to down-size the heat exchangers in the water pool to optimize PCCS without compromising its performance. Based on the parametric study, it was demonstrated that a closed-loop type PCCS could be designed sufficiently compact for installation in the available space within the containment of PWRs like OPR-1000.

Mass Transfer from Heat Exchanger for Closed Wet Cooling Tower (밀폐형 냉각탑용 열교환기에서의 물질전달)

  • Yoo, Seong-Yeon;Kim, Jin-Hyuck;Han, Kyu-Hyun;Kim, Joo-Sang;Ryu, Hae-Sung;Park, Hyoung-Joon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1119-1122
    • /
    • 2009
  • The use of cooling towers in the air conditioning systems of buildings is increasing. In closed wet cooling towers, the heat transfer between the air and surface tubes can be composed of the sensible heat transfer and the latent heat transfer. The latent heat transfer is affected by the air and spray water. This study provides a designing methodology of heat exchanger for closed wet cooling tower. The correlation equation was derived to interpret the mass transfer coefficient based on the analogy of the heat and mass transfer and the experimental results. The results from this correlation equation showed fairly good agreement with experimental data.

  • PDF

Characteristics of Closed Circuit Cooling Tower with Variation of Tube Diameter (멀티패스 밀폐식 냉각탑의 관경변화 특성)

  • Shim, Gyu-Jin;Lee, Ho-Saeng;Kim, Eun-Pil;Yoon, Jung-In;Kwon, O-Ick
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.531-536
    • /
    • 2008
  • This paper presents experimental result of characteristics about Closed circuit Cooling Tower having a rated 2RT. The experimental apparatus has been set-up with a conventional type system. The test section is heat exchangers of cooling tower that consist of different vertical tubes, 15.88mm with 10 rows and columns and 19.05 mm with 8 rows and 12 columns. The main results were summarized as follows : The values of heat and mass transfer coefficients of cooling tower operating with two paths are higher than these with one path. Cooling capacity per unit volume using 15.88mm tubes are higher than 19.05mm tubes.

  • PDF

Cooling Characteristics at Hot Side of the Thermoelectric Module for an Air Conditioner (열전모듈을 이용한 에어컨의 방열부 냉각특성에 대한 연구)

  • 김서영;강병하;장혁재;김석현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.214-220
    • /
    • 2002
  • A small air conditioner using thermoelectric module has been designed and built. Three types of cooling methods, such as air cooling, closed-loop water cooling, and evaporative cooling, for hot side of thermoelectric module have been investigated. Among three types of cooling method, the evaporative cooling method is seen to be the most effective to achieve the steady state operation of a thermoelectric air conditioner The system performance with evaporative cooling method are also studied in detail for several oprating parameters, such as input power to the thermoelectric module, water or air flow rate at the hot side, and air flow rate at the cold side. The results obtained indicate that the cooling capacity of a system is increased with an increase in the input power to the thermoelectric module while the system COP is decreased. It is also found that the optimal air flow rate as well as water flow rate at the hot side is needed for the best system performance at a liven operating condition. Both the system COP and cooling capacity are increased as the air flow rate at cold side is increased.

Investigation of the Thermal Performance of a Vertical Two-Phase Closed Thermosyphon as a Passive Cooling System for a Nuclear Reactor Spent Fuel Storage Pool

  • Kusuma, Mukhsinun Hadi;Putra, Nandy;Antariksawan, Anhar Riza;Susyadi, Susyadi;Imawan, Ficky Augusta
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.476-483
    • /
    • 2017
  • The decay heat that is produced by nuclear reactor spent fuel must be cooled in a spent fuel storage pool. A wickless heat pipe or a vertical two-phase closed thermosyphon (TPCT) is used to remove this decay heat. The objective of this research is to investigate the thermal performance of a prototype model for a large-scale vertical TPCT as a passive cooling system for a nuclear research reactor spent fuel storage pool. An experimental investigation and numerical simulation using RELAP5/MOD 3.2 were used to investigate the TPCT thermal performance. The effects of the initial pressure, filling ratio, and heat load were analyzed. Demineralized water was used as the TPCT working fluid. The cooled water was circulated in the water jacket as a cooling system. The experimental results show that the best thermal performance was obtained at a thermal resistance of $0.22^{\circ}C/W$, the lowest initial pressure, a filling ratio of 60%, and a high evaporator heat load. The simulation model that was experimentally validated showed a pattern and trend line similar to those of the experiment and can be used to predict the heat transfer phenomena of TPCT with varying inputs.

Effect of Shape of Discharge Port on Hydraulic Performance of Automotive Closed Type Water Pump (자동차 밀폐형 워터펌프의 토출구 형상이 수력성능에 미치는 영향)

  • Heo, Hyung-Seok;Lee, Gee-Soo;Bae, Suk-Jung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.39-47
    • /
    • 2006
  • Recent trend in pursuit of high performance and effectiveness for automotive cooling system has changed the application of material for impeller of automotive water pump from metal to high ability engineering resin, which can achieve optimization of design of impeller geometry and realize lightweight high efficiency water pump. Closed type water pump improves hydraulic loss of fluid through the clearance between volute casing and impeller compared with that of the existing open type water pump(Although closed type is heavier than open type for the same size and same material, adoption of plastics can solve the problem.). In the present study, the characteristics of hydraulic performance of closed type water pump were investigated with respect to the angle between shroud and hub of impeller and the shape of discharge port of volute casing. Performance tests were carried out for 4 cases, that is, for 2 impellers and 2 casings. The modification of shape of only discharge port can enhance the hydraulic performance by 10 percent and the pump efficiency by 4-6 percent.

Experimental Study on Heat Exchange Efficiency of Combined Well & Open-Closed Loops Geothermal System (지하수정호와 결합한 복합지열시스템의 열교환 효율에 대한 실험적 연구)

  • Song, Jae-Yong;Lee, Geun-Chun;Park, Namseo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.5
    • /
    • pp.43-50
    • /
    • 2018
  • The temperature of underground water generally remains constant regardless of the season. therefore, it is possible to get plenty of energy if we use characteristics of underground water for both cooling and heating. This study evaluates efficiency of real size coaxial and U-tube type complex geothermal system which is combined with underground water well. This study also evaluates relative efficiency/adaptability through comparison with existing geothermal systems(vertical closed loop system, open loop system(SCW)). The heat exchange capacity of complex geothermal system according to temperature difference between circulating water and underground water shows very high significance by increasing proportionally. The temperature change of underground water according to injection energy, shows very high linear growth aspect as injection thermal volume heightens. As a result of evaluation of heat exchange volume between complex geothermal system and comparative geothermal system, coaxial type has 26.1 times greater efficiency than comparative vertical closed type and 2.8 times greater efficiency than SCW type. U-tube type has 26.5 tims greater efficiency than comparative vertical closed type and 2.8 times greater than SCW type as well. This means complex geothermal system has extremely outstanding performance.

저층방류 해석을 위한 수치모의

  • Kim, Chul;Kim, Dae-Geun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.02a
    • /
    • pp.93-111
    • /
    • 2004
  • 온수 방류방식의 분류는 냉각수 공급방식별로 냉각수 통과방식(once-through cooling system)과 냉각수 재순환방식(closed-cycle cooling: system)으로 구분된다. 배출구조별 분류는 수표면방류 방식(surface discharge type)과 수중방류 방식(submerged discharge type)으로 구분된다. 국내 외의 연구결과 수중 방류방식이 희석효과가 좋아 환경에 미치는 영향이 작은 것으로 평가되고 있으나, 국내의 발전소에서는 대부분 수표면방류 방식을 채택하고 있다. (중략)

  • PDF