• 제목/요약/키워드: Close Force

검색결과 433건 처리시간 0.026초

고속가공용 엔드밀공구의 형상변화에 의한 성능평가 (Machinability evaluation according to variation of tool shape in high speed machining)

  • 강명창;김정석;이득우;김광호;하동근
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.393-398
    • /
    • 2001
  • The technique of high speed machining is widely studied in machining fields, because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool for high speed machining in not close behind that of machine tool. In this study, several types flat endmill is prepared for obtaining data according to tool shape. Especially, we concentrated in helix angle, number of cutting edge, rake angle and relief angle. Machinability is measured by cutting force, tool life, tool wear, chip shape and surface roughness according to cutting length. 3-axis cutting forces are acquired from the invented tool dynamometer for high speed machining. Particularly, we found out that the axial cutting force waveform has a good relation with tool wear features. By above results, it is suggested the endmill tool with $45^{\circ}$ helix angle, 6 cutting edge, $-15^{\circ}$ rake angle and $12^{\circ}$ relief angle be suitable for high speed machining

  • PDF

조명등기구 배선용 커넥터의 안전성 평가 및 분석에 관한 연구 (Safety Estimation and Analysis Study of the Connector for Lighting Fixture Wiring)

  • 최충석
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.541-545
    • /
    • 2009
  • This study evaluated the contact resistance, insulation resistance, withstand voltage characteristics and insertion force, etc., of the wire connector used inside an integrated LITE WAY lighting fixture developed for efficient installation. Since the connector connecting the lighting fixture's internal wires is housed, it is easily connected and separated and has a structure enabling a close-fitting connection. The temperature and time applied to the high temperature characteristics test of the connector are $105^{\circ}C$ and 16 hours, respectively. The measured contact resistance of the high temperature tested connector was 3.258 mV/A, and its measured insulation resistance was greater than $10\;G{\Omega}$ All specimens demonstrated uniform insulation characteristics, which could be seen to be in good condition. From the withstand voltage test results found before and after performing the high temperature operation test on the connector for cable connection, it was confirmed that the withstand voltage characteristics between all terminals were good. The insertion force of the connector connecting the internal wiring averaged 9.67 kgf. It was observed that the insertion force between the plug housing and the female terminal, and that between the plug housing and the male terminal, were 0.680 kgf and 1.27 kgf on average, respectively.

Wind fragility analysis of RC chimney with temperature effects by dual response surface method

  • Datta, Gaurav;Sahoo, Avinandan;Bhattacharjya, Soumya
    • Wind and Structures
    • /
    • 제31권1호
    • /
    • pp.59-73
    • /
    • 2020
  • Wind fragility analysis (WFA) of concrete chimney is often executed disregarding temperature effects. But combined wind and temperature effect is the most critical limit state to define the safety of a chimney. Hence, in this study, WFA of a 70 m tall RC chimney for combined wind and temperature effects is explored. The wind force time-history is generated by spectral representation method. The safety of chimney is assessed considering limit states of stress failure in concrete and steel. A moving-least-squares method based dual response surface method (DRSM) procedure is proposed in WFA to alleviate huge computational time requirement by the conventional direct Monte Carlo simulation (MCS) approach. The DRSM captures the record-to-record variation of wind force time-histories and uncertainty in system parameters. The proposed DRSM approach yields fragility curves which are in close conformity with the most accurate direct MCS approach within substantially less computational time. In this regard, the error by the single-level RSM and least-squares method based DRSM can be easily noted. The WFA results indicate that over temperature difference of 150℃, the temperature stress is so pronounced that the probability of failure is very high even at 30 m/s wind speed. However, below 100℃, wind governs the design.

검지의 효율적 화면접촉감응을 위한 압전-구조물계의 동적설계 (Dynamic design of piezoelectric structures for an efficient tactile feedback of index finger on touch screen)

  • 박영민;김광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.280-281
    • /
    • 2009
  • Piezoelectric vibrators can be good replacements of electric motors to excite touch screen of a mobile device owing to small volume and low power consumption. One problem to be solved yet for real application is larger excitation force or moment than available currently. More efficient excitation by a piezoelectric vibrator could be achieved by operating at one of resonance frequencies of the system, which must also be as close as possible to frequency range where index finger is most sensitive and increasing transmission force or moment at that frequency. In this study, dynamic models are derived for the piezoelectric exciter and an adhesive viscoelastic layer, which connect the exciter to the screen. The adhesive layer is modeled as distributed stiffness by considering its geometric shape to relative to the piezoelectric exciter. Then, equations of motion for the piezoelectric exciter and the adhesive layer are derived using Hamilton's principle. Based on this model, dynamic characteristics of the exciter will be designed to maximize the force or moment transmitted onto the screen structure.

  • PDF

채널 내 자유 낙하하는 2차원 원형 실린더의 운동 특성에 관한 수치적 연구 (Numerical Study on the Motion Characteristics of a Freely Falling Two-Dimensional Circular Cylinder in a Channel)

  • 정해권;윤현식;하만영
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.495-505
    • /
    • 2009
  • A two-dimensional circular cylinder freely falling in a channel has been simulated by using immersed boundary - lattice Boltzmann method (IB-LBM) in order to analyze the characteristics of motion originated by the interaction between the fluid flow and the cylinder. The wide range of the solid/fluid density ratio has been considered to identify the effect of the solid/fluid density ratio on the motion characteristics such as the falling time, the transverse force and the trajectory in the streamwise and transverse directions. In addition, the effect of the gap between the cylinder and the wall on the motion of a two-dimensional freely falling circular cylinder has been revealed by taking into account a various range of the gap size. As the cylinder is close to the wall at the initial dropping position, vortex shedding in the wake occurs early since the shear flow formed in the spacing between the cylinder and the wall drives flow instabilities from the initial stage of freely falling. In order to consider the characteristics of transverse motion of the cylinder in the initial stage of freely falling, quantitative information about the cylinder motion variables such as the transverse force, trajectory and settling time has been investigate.

주파수응답함수의 부분구조합성 법을 이용한 차 실내소음 예측 (Vehicle Interior Noise Analysis Using Frequency Response Function Based Substructural Method)

  • 허덕재;박태원
    • 한국소음진동공학회논문집
    • /
    • 제11권4호
    • /
    • pp.5-12
    • /
    • 2001
  • This paper presents the simulation methodology of the interior noise of vehicle using the frequency response function based hybrid modeling of the system which consists of multi-subsystem models obtained by the test or analysis. The complex systems such as a trimmed body of high modal density and a powertrain were modeled by using experimental data, and a sub-frame of a vehicle of low modal density was modeled by finite element data. Modeling of the whole system was executed and validated in the two stages. The first stave is combining the trimmed body and the sub-frame, and the second stage is attaching the powertrain, which is a exciting source, to the combined model of the first stage. The input force to the system was modeled as an equivalent force in the virtual space, which was obtained from impedance method using the FRFs of the powertrain and the responses. The interior noise predicted by the proposed method was very close to the direct measurement, which showed feasibility of the proposed modeling procedure. Since the methodology is easily applied to both the transfer path analysis of structure-borne noise and the analysis of noise contribution of a sub-system, it is expected to be a strong tool for design change of a vehicle in the earlier stare.

  • PDF

분말입도에 따른 Nd-Fe-B 소결자석의 미세조직 변화 및 자기적 특성 (Microstructure and Magnetic Properties of Nd-Fe-B Sintered Magnet with the Variation of Particle Size)

  • 신동원;김동환;박영철;김정곤
    • 한국분말재료학회지
    • /
    • 제23권6호
    • /
    • pp.447-452
    • /
    • 2016
  • Neodymium-iron-boron (Nd-Fe-B) sintered magnets have excellent magnetic properties such as the remanence, coercive force, and the maximum energy product compared to other hard magnetic materials. The coercive force of Nd-Fe-B sintered magnets is improved by the addition of heavy rare earth elements such as dysprosium and terbium instead of neodymium. Then, the magnetocrystalline anisotropy of Nd-Fe-B sintered magnets increases. However, additional elements have increased the production cost of Nd-Fe-B sintered magnets. Hence, a study on the control of the microstructure of Nd-Fe-B magnets is being conducted. As the coercive force of magnets improves, the grain size of the $Nd_2Fe_{14}B$ grain is close to 300 nm because they are nucleation-type magnets. In this study, fine particles of Nd-Fe-B are prepared with various grinding energies in the pulverization process used for preparing sintered magnets, and the microstructure and magnetic properties of the magnets are investigated.

PZT Actuator를 이용한 외팔보의 능동진동제어 (Active Vibration Control of Cantilever Beams Using PZT Actuators)

  • 신창주;홍진숙;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1293-1300
    • /
    • 2008
  • This paper presents an active vibration control of cantilever beams under disturbances by a primary force. A direct velocity feedback control using a pair of PZT actuator and a velocity sensor is considered. Variation of the stability and performance with the locations of the sensor/actuator pair is investigated. It is found that the maximum gain varies with the locations of the sensor/actuator pair significantly. The maximum gain shows a symmetric distribution along the beam length with respect to the center point, although the boundary condition of the beam is unsymmetric. The control performance is affected by the location of the primary force as well as the location of the sensor/actuator pair. The active control system can more effectively reduce the vibration when the primary force is located close to the fixed boundary.

비정형 택배 상자 디팔레타이징을 위한 작업 면적 조절 그리퍼 설계 (Gripper Design with Adjustable Working Area for Depalletizing Delivery Cardboard box of Various Sizes)

  • 심예리;진상록
    • 로봇학회논문지
    • /
    • 제18권1호
    • /
    • pp.29-36
    • /
    • 2023
  • This paper shows a design of a gripper with an adjustable working area to depalletize a delivery cardboard box of various sizes. The gripper should pick the box with only one flat surface to lift the boxes stacked close to each other. The lift force of the gripper is the vacuum suction force. To handle boxes of various sizes, the gripper adjusts the working area. The gripper operates four vacuum generators independently. The simultaneous rotation on different axes of four gripper-arms with suction cups moves the position of suction force. The six operation modes of the gripper are divided into the size of the working area. The operation mode is determined according to the size of the top side of the box. Experiments are conducted by lifting the box of various sizes. The gripper can pick the box of various sizes without vacuum leaks from unused cups. Also, the experiments verify the improvement of stability of the box by adjusting the working area of the gripper. The gripper can lift the box without deformation of the box by adjusting the working area.

Solution for a semi-infinite plate with radial crack and radial crack emanating from circular hole under bi-axial loading by body force method

  • Manjunath, B.S.;Ramakrishna, D.S.
    • Interaction and multiscale mechanics
    • /
    • 제2권2호
    • /
    • pp.177-187
    • /
    • 2009
  • Machine or structural members subjected to fatigue loading will have a crack initiated during early part of their life. Therefore analysis of members with cracks and other discontinuities is very important. Finite element method has enjoyed widespread use in engineering, but it is not convenient for crack problems as the region very close to crack tip is to be discretized with very fine mesh. However, as the body force method (BFM), requires only the boundary of the discontinuity (crack or hole) to be discretized it is easy versatile technique to analyze such problems. In the present work fundamental solution for concentrated load x + iy acting in the semi-infinite plate at an arbitrary point $z_0=x_0+iy_0$ is considered. These fundamental solutions are in complex form ${\phi}(z)$ and ${\psi}(z)$ (England 1971). These potentials are known as Melan potentials (Ramakrishna 1994). A crack in the semi-infinite plate as shown in Fig. 1 is considered. This crack is divided into number of divisions. By applying pair of body forces on a division, the resultant forces on the remaining 'N'divisions are to be found for which ${\phi}_1(z)$ and ${\psi}_1(z)$ are derived. Body force method is applied to calculate stress intensity factor for crack in semi-infinite plate. Also for the case of crack emanating from circular hole in semi-infinite plate radial stress, hoop stress and shear stress are calculated around the hole and crack. Convergent results are obtained by body force method. These results are compared with FEM results.