• Title/Summary/Keyword: Clock State

Search Result 122, Processing Time 0.024 seconds

Performance Analysis of Synchronization Clock with Various Clock States Using Measured Clock Noises in NG-SDH Networks (NG-SDH망에서 측정된 클럭잡음을 이용한 다양한 클럭상태에 따른 동기클럭 성능분석)

  • Lee, Chang-Ki
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.637-644
    • /
    • 2009
  • A study about performance analysis of synchronization clock using measured clock noises is required. Therefore this paper executed the study for performance analysis of synchronization clock and acquirement of maximum number of network node with various clock states using measured clock noises in NG-SDH networks. Also this paper generated a suitable clock model using measured clock noises, and carried out simulations with various clock states. Through the simulation results, maximum numbers were 80 or more network nodes in normal state, and were below 37 nodes in short-term phase transient(SPT) state, and were 50 or more in long-term phase transient(LPT) state. Accordingly this study showed that maximum numbers to meet ITU-T specification were below 37 network nodes in three clock states. Also this study showed that when SPT or LPT states occur from NE network before DOTS system, synchronization source must change with other stable synchronization source of normal state.

A study on performance analysis of synchronization clock with various clock states in NG-SDH networks (NG-SDH 망에서 다양한 클럭상태 하에서의 동기클럭 성능분석에 관한 연구)

  • Lee Chang-Ki
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.303-310
    • /
    • 2006
  • This paper is to execute a study for characteristic analysis of synchronization clock and maximum network node number with various clock states, normal, SPT, LPT, in NG-SDH networks. Through the simulations, maximum network node numbers showed from 42 to 38 nodes in normal state. In SPT state, maximum network node numbers, when the last NE network applied to only SPT state, presented from 19 to 4 nodes, much less than normal state. Node numbers to meet specification in case of occurrence of SPT state in all NE networks decreased greatly. In LPT state, all maximum node numbers, when the last NE network applied to only LPT state, presented more than 50 nodes, and the results in case of occurrence of LPT state in all NE networks were also identified. However, node numbers to meet specification in case of LPT state in all DOTS networks were few large with difference between LPT and normal or SPT state.

Design Methodologies for Reliable Clock Networks

  • Joo, Deokjin;Kang, Minseok;Kim, Taewhan
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.4
    • /
    • pp.257-266
    • /
    • 2012
  • This paper overviews clock design problems related to the circuit reliability in deep submicron design technology. The topics include the clock polarity assignment problem for reducing peak power/ground noise, clock mesh network design problem for tolerating clock delay variation, electromagnetic interference aware clock optimization problem, adjustable delay buffer allocation and assignment problem to support multiple voltage mode designs, and the state encoding problem for reducing peak current in sequential elements. The last topic belongs to finite state machine (FSM) design and is not directly related to the clock design, but it can be viewed that reducing noise at the sequential elements driven by clock signal is contained in the spectrum of reliable circuit design from the clock source down to sequential elements.

Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

  • Putker, Marrit;O'Neill, John Stuart
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.6-19
    • /
    • 2016
  • Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redoxsensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian timekeeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological timekeeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

Development of Simulator for Performance Analysis of Synchronization Clock in the Synchronization Network and Transmission Network (동기망과 전송망에서의 동기클럭 성능 분석을 위한 시뮬레이터 개발)

  • Lee, Chang-Ki
    • The KIPS Transactions:PartC
    • /
    • v.11C no.1
    • /
    • pp.123-134
    • /
    • 2004
  • The synchronized clock performance in the synchronization network and SDH transmission network design is an important element in aspect of guaranteeing network stability and data transmission. Consequently the simulator which can applicable various parameters and several input levels from the best state to the worst state for performance analysis of the synchronized clock is required in case of network design. Therefore, in this paper, 1 developed the SNCA and TNCA for analysis of the synchronized clock in the synchronization network and transmission network. And utilizing these simulators with various wander generation, node number and clock state, 1 obtained the synchronized clock characteristics and maximum network nodes In NE1, NE2 and NE3 transmission network and DOTS1, DOTS2 synchronization network.

A 40 Gb/s Clock and Data Recovery Module with Improved Phase-Locked Loop Circuits

  • Park, Hyun;Kim, Kang-Wook;Lim, Sang-Kyu;Ko, Je-Soo
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.275-281
    • /
    • 2008
  • A 40 Gb/s clock and data recovery (CDR) module for a fiber-optic receiver with improved phase-locked loop (PLL) circuits has been successfully implemented. The PLL of the CDR module employs an improved D-type flip-flop frequency acquisition circuit, which helps to stabilize the CDR performance, to obtain faster frequency acquisition, and to reduce the time of recovering the lock state in the event of losing the lock state. The measured RMS jitter of the clock signal recovered from 40 Gb/s pseudo-random binary sequence ($2^{31}-1$) data by the improved PLL clock recovery module is 210 fs. The CDR module also integrates a 40 Gb/s D-FF decision circuit, demonstrating that it can produce clean retimed data using the recovered clock.

  • PDF

An On-Chip Test Clock Control Scheme for Circuit Aging Monitoring

  • Yi, Hyunbean
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.71-78
    • /
    • 2013
  • In highly reliable and durable systems, failures due to aging might result in catastrophes. Aging monitoring techniques to prevent catastrophes by predicting such a failure are required. Aging can be monitored by performing a delay test at faster clocks than functional clock in field and checking the current delay state from the test clock frequencies at which the delay test is passed or failed. In this paper, we focus on test clock control scheme for a system-on-chip (SoC) with multiple clock domains. We describe limitations of existing at-speed test clock control methods and present an on-chip faster-than-at-speed test clock control scheme for intra/inter-clock domain test. Experimental results show our simulation results and area analysis. With a simple control scheme, with low area overhead, and without any modification of scan architecture, the proposed method enables faster-than-at-speed test of SoCs with multiple clock domains.

A Performance Analysis on Steady-state Synchronous Clock in NG-SDH Network (광전송망에서 정상상태 동기클럭 성능)

  • Yang, Choong-Reol;Ko, Je-Soo;Lee, Chang-Ki;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6B
    • /
    • pp.305-315
    • /
    • 2007
  • In this paper, We generated a wander generation model from really measured clock noise data on the transmission node and DOTS in NG-SDH network. and then, We presented the performance of Synch. clock and maximum node level capable network configuration through the clock characteristics simulation on network having the steady-state clock.

Time-to-Digital Converter Implemented in Field-Programmable Gate Array using a Multiphase Clock and Double State Measurements (Field Programmable Gate Array 기반 다중 클럭과 이중 상태 측정을 이용한 시간-디지털 변환기)

  • Jung, Hyun-Chul;Lim, Hansang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.156-164
    • /
    • 2014
  • In a delay line type of a time-to-digital converter implemented in Field Programmable Gate Array, the timing accuracy decreases for a longer carry chain. In this paper, we propose a structure that has a multi-phase clock and a state machine to check metastability; this would reduce the required length of the carry chain with the same time resolution. To reduce the errors caused by the time difference in the four delay lines associated with a four-phase clock, the proposed TDC generates a single input pulse from four phase clocks and uses a single delay line. Moreover, the state machine is designed to find the phase clock that is used to generate the single input pulse and determine the metastable state without a synchronizer. With the measurement range of 1 ms, the measured resolution was 22 ps, and the non-linearity was 25 ps.

Measurement Scheme for One-Way Delay Variation with Detection and Removal of Clock Skew

  • Aoki, Makoto;Oki, Eiji;Rojas-Cessa, Roberto
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.854-862
    • /
    • 2010
  • One-way delay variation (OWDV) has become increasingly of interest to researchers as a way to evaluate network state and service quality, especially for real-time and streaming services such as voice-over-Internet-protocol (VoIP) and video. Many schemes for OWDV measurement require clock synchronization through the global-positioning system (GPS) or network time protocol. In clock-synchronized approaches, the accuracy of OWDV measurement depends on the accuracy of the clock synchronization. GPS provides highly accurate clock synchronization. However, the deployment of GPS on legacy network equipment might be slow and costly. This paper proposes a method for measuring OWDV that dispenses with clock synchronization. The clock synchronization problem is mainly caused by clock skew. The proposed approach is based on the measurement of inter-packet delay and accumulated OWDV. This paper shows the performance of the proposed scheme via simulations and through experiments in a VoIP network. The presented simulation and measurement results indicate that clock skew can be efficiently measured and removed and that OWDV can be measured without requiring clock synchronization.