• Title/Summary/Keyword: Clock Period

Search Result 149, Processing Time 0.023 seconds

Biological Clock and Ultradian Metabolic Oscillation in Saccharomyces cerevisiae (Saccharomyces cerevisiae의 생물시계와 초단기 대사진동)

  • Kwon, Chong Suk;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.985-991
    • /
    • 2018
  • Biological clocks are the basis of temporal control of metabolism and behavior. These clocks are characterized by autonomous free-running oscillation and temperature compensation and are found in animals, plants, and microorganisms. To date, various biological clocks have been reported. These include clocks governing hibernation, sleep/wake, heartbeat, and courtship song. These clocks can be differentiated by the period of rhythms, for example, infradian rhythms (> 24-hr period), circadian rhythms (24-hr period), and ultradian rhythms (< 24-hr period). In yeast (Saccharomyces cerevisiae), at least five different autonomous oscillations have been reported; (1) glycolytic oscillations (T = 1~30 min), (2) cell cycle-dependent oscillations (T = 2~16 hr), (3) ultradian metabolic oscillations (T = 15~50 min), (4) yeast colony oscillations (T = a few hours), and (5) circadian oscillations (T = 24 hr). In this review, we discuss studies on oscillators, pacemakers, and synchronizers, in addition to the application of biological clocks, to demonstrate the nature of autonomous oscillations, especially ultradian metabolic oscillations of S. cerevisiae.

Automatic Clock and Time Signal System of the Astronomical Agency in East Asia Area (동아시아 천문관서의 자동 시보와 타종장치 시스템의 고찰 - 수운의상대, 자격루, 옥루, 송이영 혼천시계 등을 중심으로 -)

  • Lee, Yong-Sam;Kim, Sang-Hyuk;Jeong, Jang-Hae
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.355-374
    • /
    • 2009
  • We analysed the old automatic clock and time signal system that was used by the national astronomical agency in East Asian Area. Jagyeongnu is a kind of water clock that was operated by the flowing water in Joseon Dynasty. Seowoongwan managed the water clock so as to keep the standard time system in the dynasty from the 16th year (1434) of King Sejong's reign. In 1438 the Okru that was invented in the period. Such kind of clock system already was used in China, which was Shui $y\ddot{u}n$ i hsiang t'ai (水運儀象壹) in 1092. During the period Joseon Dynasty, China and Japan had been kept the time system that one day is divided into 12 shin (12辰) or 100 gak (刻). However detailed part of the system had a little difference among the three countries. Though the whole system of water clock in Joseon had manufactured on the basis of Chinese, it had been gradually developed by own method and idea. In this study we show the historical records of the standard time keeping system in East Asian history. And then we can inform materials on the structure and functional devises for the purpose of new restoration models about the automatic clock and time system.

Rhythmic Gene Expression in Somite Formation and Neural Development

  • Kageyama, Ryoichiro;Niwa, Yasutaka;Shimojo, Hiromi
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.497-502
    • /
    • 2009
  • In mouse embryos, somite formation occurs every two hours, and this periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 expression oscillates by negative feedback and is cooperatively regulated by Fgf and Notch signaling. Both loss of expression and sustained expression of Hes7 result in severe somite fusion, suggesting that Hes7 oscillation is required for proper somite segmentation. Expression of a related gene, Hes1, also oscillates by negative feedback with a period of about two hours in many cell types such as neural progenitor cells. Hes1 is required for maintenance of neural progenitor cells, but persistent Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillation is required for their proper activities. Hes1 oscillation regulates cyclic expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta1, which in turn lead to maintenance of neural progenitor cells by mutual activation of Notch signaling. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) plays an important role in many biological events.

Effect of mPER1 on the Expression of HSP105 Gene in the Mouse SCN

  • Kim Han-Gyu;Bae Ki-Ho
    • Biomedical Science Letters
    • /
    • v.12 no.1
    • /
    • pp.53-56
    • /
    • 2006
  • The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the circadian pacemaker entrained to the 24-hr day by environmental time cues. Major circadian genes such as mPeriod ($mPer1{\sim}3$) and mCryptochrome ($mCry1{\sim}2$) are actively transcribed by the action of CLOCK/BMAL heterodimers, and in turn, these are being suppressed by the mPER/mCRY complex. In the study, the locomotor activity rhythms of mPer1 Knockout (KO) mice are measured, and the expression profiles of Heat Shock Protein 105kDa (HSP 105) genes in the SCN were measured by in situ hybridization. In agreement with previous reports, the locomotor activity rhythm of mPer1 KO mice was much shorter than that of wildtype. In addition, the total bout of activity of mPer1 KO was less in comparison to control mice. The expression of HSP 105 in the SCN of mPer1 KO mice was ranged from CT6 to CT22, with a peak level at CT14, implying that the gene are under the control of circadian clock. However, the expression of HSP 105 in the SCN of wildtype could not be detected in our study. Further analysis will reveal the direct or indirect regulation by mPer1 on the expression in the SCN and the role of the gene in the circadian clock.

  • PDF

Differential Effects of Two Period Genes on the Physiology and Proteomic Profiles of Mouse Anterior Tibialis Muscles

  • Bae, Kiho;Lee, Kisoo;Seo, Younguk;Lee, Haesang;Kim, Dongyong;Choi, Inho
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.275-284
    • /
    • 2006
  • The molecular components that generate and maintain circadian rhythms of physiology and behavior in mammals are present both in the brain (suprachiasmatic nucleus; SCN) and in peripheral tissues. Examination of mice with targeted disruptions of either mPer1 or mPer2 has shown that these two genes have key roles in the SCN circadian clock. Here we show that loss of the clock gene mPer2 affects forced locomotor performance in mice without altering muscle contractility. A proteomic analysis revealed that the anterior tibialis muscles of the mPer2 knockout mice had higher levels of glycolytic enzymes such as triose phosphate isomerase and enolase than those of either the wild type or mPer1 knockout mice. In addition, the level of expression of HSP90 in the mPer2 mutant mice was also significantly higher than in wildtype mice. These results suggest that the reduced locomotor endurance of the mPer2 knockout mice reflects a greater dependence on anaerobic metabolism under stress conditions, and that the two canonical clock genes, mPer1 and mPer2, play distinct roles in the physiology of skeletal muscle.

Evaluation of EtherCAT Clock Synchronization in Distributed Control Systems (분산 제어 시스템을 위한 EtherCAT 시계 동기화의 성능 평가)

  • Kim, Woonggy;Sung, Minyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.785-797
    • /
    • 2014
  • Support for the precise time synchronization of EtherCAT, known as distributed clock (DC), enables the design of highly synchronized operations in distributed real-time systems. This study evaluates the performance of the EtherCAT DC through extensive experiments in a real automation system. We constructed an EtherCAT control system using Xenomai and IgH EtherCAT stack, and analyzed the clock deviation for different devices in the network. The results of the evaluation revealed that the accuracy of the synchronized clock is affected by several factors such as the number of slave devices, period of drift compensation, and type of system time base. In particular, we found that careful decision regarding the system time base is required because it has a fundamental effect on the master operation, which results in significantly different performance characteristics.

Retiming for SoC Using Single-Phase Clocked Latches (싱글 페이즈 클락드 래치를 이용한 SoC 리타이밍)

  • Kim Moon-Su;Rim Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.1-9
    • /
    • 2006
  • In the System-on-Chip(SoC) design, the global wires are critical parts for the performance. Therefore, the global wires need to be pipelined using flip-flops or latches. Since the timing constraint of the latch is more flexible than it of the flip-flop, the latch-based design can provide a better solution for the clock period. Retiming is an optimizing technique which repositions memory elements in the circuits to reduce the clock period. Traditionally, retiming is used on gate-level netlist, but retiming for SoC is used on macro-level netlist. In this paper, we extend the previous work of retiming for SoC using flip-flops to retiming for SoC using single-phase clocked latches. In this paper we propose a MILP for retiming for SoC using single-phase clocked latches, and apply the fixpoint computation to solve it. Experimental results show that retiming for SoC using latches reduces the clock period of circuits by average 10 percent compared with retiming for SoC using flip-flops.

Characteristics of Sap Exudation from Acer okamotoanum (Nakai) Plantation Forest in Jinju Region (진주지역 우산고로쇠나무 인공림의 수액 출수 특성)

  • Kim, Chang-Hwan;Park, Joon-hyung;Lee, Kwang-Soo;Park, Yong-Bae;Lee, Kyoung-Tae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.308-316
    • /
    • 2017
  • This study was carried out to investigate the sap exudation characteristics in Acer okamotoanum (Nakai) plantation forest. As a result, Sap exudation quantity was rapidly reduced when mean temperature was increased by above $3.4^{\circ}C$. Considering this result, sap collection before end of February is more effective. Sap exudation quantity during the day started at approximately 9 o' clock, and reached the peak at approximately 11 o' clock, and ended at approximately 16 o' clock. Sugar content of sap was reduced with increasing period. Except for Na, and mineral components by tapping period were no significant difference.

Performance Improvement of Anti-collision Algorithm for RFID Protocol and Algorithm Comparison (RFID 프로토콜의 충돌방지 알고리즘의 성능 개선과 알고리즘 비교)

  • Lim, Jung-Hyun;Kim, Ji-Yoon;Jwa, Jeong-Woo;Yang, Doo-Yeong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.6
    • /
    • pp.51-61
    • /
    • 2007
  • In this paper, Air-interface protocols of ISO 18000-6 Types and EPCglobal Classes applied to RFID system in UHF band are analyzed, and those anticollision algorithms are realized. Also, the each algorithm which improves the performance of standard protocol is proposed, and the performance is compared when clock period of link timing is a identical condition on $12.5{\mu}s$. As the result, when 500 tags exist simultaneously inside reader interrogation zone, the tag recognition performance of a standard protocol is better in preceding order of Class-1 Generation-1, Type B, Type A, Class-0 and Class-1 Generation-2. And also the performance of improved protocol is better in ascending order of Type B, Type A, Class-1 Generation-1, Class-0 and Class-1 Generation-2. Therefore, performance of tag recognition remarkably depends on the regulated clock period in the protocol and link timing between a reader and a tag.

An Approach to Identify Single Nucleotide Polymorphisms in the Period Circadian Clock 3 (PER3) Gene and Proposed Functional Associations with Exercise Training in a Thoroughbred Horse (국내산 경주마의 주기성 시계 유전자(PER3) SNP 및 운동에 따른 기능적 식별 접근 가능성 제안)

  • Do, Kyoung-Tag;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1304-1310
    • /
    • 2015
  • The period circadian clock gene 3 (PER3) plays a role in the mammalian circadian clocksystem. A regular exercise regime may affect the PER3 transcription in skeletal muscle. Although the effects of day length on circadian and circannual processes are well established in humans and mice, the influence of exercise on these processes in the horse has not been investigated. The present study investigated the expression of the PER3 gene following exercise in a thoroughbred breed of Korean horse. In addition, a comprehensive in silico nonsynonymous single nucleotide polymorphism (nsSNP) analysis of the horse PER3 gene and predicted effects of nsSNPs on proteins were examined. The expression of PER3 in skeletal muscle was significantly upregulated after exercise. Four nsSNPs were functionally annotated and analyzed by computational prediction. The total free energy and RMSD values of PER3 gene showed causative mutations. The results showed that nsSNP s395916798 (G72R) was associated with residues that have stabilizing effects on structure and function of PER3 gene. This study documented role of PER3 gene in phenotypic adaptation related to exercise in skeletal muscle. Further, the SNPs in PER3 could serve as useful biomarkers of early recovery after exercise in racehorses.