DOI QR코드

DOI QR Code

Rhythmic Gene Expression in Somite Formation and Neural Development

  • Received : 2009.03.17
  • Accepted : 2009.03.20
  • Published : 2009.05.31

Abstract

In mouse embryos, somite formation occurs every two hours, and this periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 expression oscillates by negative feedback and is cooperatively regulated by Fgf and Notch signaling. Both loss of expression and sustained expression of Hes7 result in severe somite fusion, suggesting that Hes7 oscillation is required for proper somite segmentation. Expression of a related gene, Hes1, also oscillates by negative feedback with a period of about two hours in many cell types such as neural progenitor cells. Hes1 is required for maintenance of neural progenitor cells, but persistent Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillation is required for their proper activities. Hes1 oscillation regulates cyclic expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta1, which in turn lead to maintenance of neural progenitor cells by mutual activation of Notch signaling. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) plays an important role in many biological events.

Keywords

Acknowledgement

Supported by : Ministry of Education, Culture, Sports, Science and Technology of Japan, Uehara Memorial Foundation, Japan Society for the Promotion of Science

References

  1. Aulehla, A., and Herrmann, B.G. (2004). Segmentation in vertebrates: clock and gradient finally joined. Genes Dev. 18, 2060-2067 https://doi.org/10.1101/gad.1217404
  2. Baek, J.H., Hatakeyama, J., Sakamoto, S., Ohtsuka, T., and Kageyama, R. (2006). Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133, 2467-2476 https://doi.org/10.1242/dev.02403
  3. Bar-Or, R.L., Maya, R., Segel, L.A., Alon, U., Levine, A.J., and Oren,M. (2000). Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc. Natl. Acad. Sci. USA 97, 11250-11255 https://doi.org/10.1073/pnas.210171597
  4. Bertrand, N., Castro, D.S., and Guillemot, F. (2002). Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517-530 https://doi.org/10.1038/nrn874
  5. Bessho, Y., Sakata, R., Komatsu, S., Shiota, K., Yamada, S., and Kageyama, R. (2001). Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev. 15, 2642-2647 https://doi.org/10.1101/gad.930601
  6. Bessho, Y., Hirata, H., Masamizu, Y., and Kageyama, R. (2003). Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev. 17, 1451-1456 https://doi.org/10.1101/gad.1092303
  7. Bettenhausen, B., Hrabe de Angelis, M., Simon, D., Guenet, J.L., and Gossler, A. (1995). Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121, 2407-2418
  8. Castro, D.S., Skowronska-Krawczyk, D., Armant, O., Donaldson, I.J., Parras, C., Hunt, C., Critchley, J.A., Nguyen, L., Gossler, A., Gottgens, B., et al. (2006). Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative binding to a conserved DNA motif. Dev. Cell 11, 831-844 https://doi.org/10.1016/j.devcel.2006.10.006
  9. Chen, J., Kang, L., and Zhang, N. (2005). Negative feedback loop formed by Lunatic fringe and Hes7 controls their oscillatory expression during somitogenesis. Genesis 43, 196-204 https://doi.org/10.1002/gene.20171
  10. Dequeant, M.-L., and Pourquie, O. (2008). Segmental patterning of the vertebrate embryonic axis. Nat. Rev. Genet. 9, 370-382 https://doi.org/10.1038/nrg2320
  11. Dequeant, M.-L., Glynn, E., Gaudenz, K., Wahl, M., Chen, J., Mushegian, A., and Pourquie, O. (2006). A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314, 1595-1598 https://doi.org/10.1126/science.1133141
  12. Dubrulle, J., and Pourquie, O. (2004). fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427, 419-422 https://doi.org/10.1038/nature02216
  13. Gridley, T. (2006). The long and short of it: somite formation in mice. Dev. Dyn. 235, 2330-2336 https://doi.org/10.1002/dvdy.20850
  14. Guillemot, F., and Joyner, A.L. (1993). Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mech. Dev. 42, 171-185 https://doi.org/10.1016/0925-4773(93)90006-J
  15. Hatakeyama, J., Bessho, Y., Katoh, K., Ookawara, S., Fujioka, M., Guillemot, F., and Kageyama, R. (2004). Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539-5550 https://doi.org/10.1242/dev.01436
  16. Hirata, H., Yoshiura, S., Ohtsuka, T., Bessho, Y., Harada, T., Yoshikawa, K., and Kageyama, R. (2002). Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840-843 https://doi.org/10.1126/science.1074560
  17. Hirata, H., Bessho, Y., Kokubu, H., Masamizu, Y., Yamada, S., Lewis, J., and Kageyama, R. (2004). Instability of Hes7 protein is crucial for the somite segmentation clock. Nat. Genet. 36, 750-754 https://doi.org/10.1038/ng1372
  18. Hoffmann, A., Levchenko, A., Scott, M.L., and Baltimore, D. (2002). The I$\kappa$B-NF-$\kappa$B signaling module: temporal control and selective gene activation. Science 298, 1241-1245 https://doi.org/10.1126/science.1071914
  19. Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S., and Takeda, H. (2006). Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441, 719-723 https://doi.org/10.1038/nature04861
  20. Huppert, S.S., Ilagan, M.X.G., De Strooper, B., and Kopan, R. (2005). Analysis of Notch function in presomitic mesoderm suggests a gamma-secretase-independent role for presenilins in somite differentiation. Dev. Cell 8, 677-688 https://doi.org/10.1016/j.devcel.2005.02.019
  21. Ishibashi, M., Ang, S.L., Shiota, K., Nakanishi, S., Kageyama, R., and Guillemot, F. (1995). Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to upregulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 9, 3136-3148 https://doi.org/10.1101/gad.9.24.3136
  22. Jensen, M.H., Sneppen, K., and Tiana, G. (2003). Sustained oscillations and time delays in gene expression of protein Hes1.FEBS Lett. 541, 176-177 https://doi.org/10.1016/S0014-5793(03)00279-5
  23. Jiang, Y.-J., Aerne, B.L., Smithers, L., Haddon, C., Ish-Horowicz, D., and Lewis, J. (2000). Notch signaling and the synchronization of the somite segmentation clock. Nature 408, 475-479 https://doi.org/10.1038/35044091
  24. Kageyama, R., Ohtsuka, T., Hatakeyama, J., and Ohsawa, R. (2005). Roles of bHLH genes in neural stem cell differentiation.Exp. Cell Res. 306, 343-348 https://doi.org/10.1016/j.yexcr.2005.03.015
  25. Kageyama, R., Ohtsuka, T., and Kobayashi, T. (2007). The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 134, 1243-1251 https://doi.org/10.1242/dev.000786
  26. Kageyama, R., Ohtsuka, T., Shimojo, H., and Imayoshi, I. (2008). Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat. Neurosci. 11, 1247-1251 https://doi.org/10.1038/nn.2208
  27. Kamakura, S., Oishi, K., Yoshimatsu, T., Nakafuku, M., Masuyama, N., and Gotoh, Y. (2004). Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signaling. Nat. Cell Biol. 6, 547-554 https://doi.org/10.1038/ncb1138
  28. Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A.J., Elowitz, M.B., and Alon, U. (2004). Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. Genet. 36, 147-150 https://doi.org/10.1038/ng1293
  29. Lewis, J. (2003). Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398-1408 https://doi.org/10.1016/S0960-9822(03)00534-7
  30. Maroto, M., Dale, J.K., Dequeant, M.-L., Petit, A.-C., and Pourquie, O. (2005). Synchronised cycling gene oscillations in presomitic mesoderm cells require cell-cell contact. Int. J. Dev. Biol. 49, 309-315 https://doi.org/10.1387/ijdb.041958mm
  31. Masamizu, Y., Ohtsuka, T., Takashima, Y., Nagahara, H., Takenaka, Y., Yoshikawa, K., Okamura, H., and Kageyama, R. (2006). Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc. Natl. Acad. Sci. USA 103, 1313-1318 https://doi.org/10.1073/pnas.0508658103
  32. Monk, N.A.M. (2003). Oscillatory expression of Hes1, p53, and NF-$\kappa$B driven by transcriptional time delays. Curr. Biol. 13, 1409-1413 https://doi.org/10.1016/S0960-9822(03)00494-9
  33. Morimoto, M., Takahashi, Y., Endo, M., and Saga, Y. (2005). The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 435, 354-359 https://doi.org/10.1038/nature03591
  34. Nelson, D.E., Ihekwaba, A.E., Elliott, M., Johnson, J.R., Gibney, C.A., Foreman, B.E., Nelson, G., See, V., Horton, C.A., Spiller, D.G., et al. (2004). Oscillations in NF-$\kappa$B signaling control the dynamics of gene expression. Science 306, 704-708 https://doi.org/10.1126/science.1099962
  35. Nieto, M., Schuurmans, S., Britz, O., and Guillemot, F. (2001). Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29, 401-413 https://doi.org/10.1016/S0896-6273(01)00214-8
  36. Niwa, Y., Masamizu, Y., Liu, T., Nakayama, R., Deng, C.-X., and Kageyama, R. (2007). The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and Notch signaling in the somite segmentation clock. Dev. Cell 13, 298-304 https://doi.org/10.1016/j.devcel.2007.07.013
  37. Ohtsuka, T., Ishibashi, M., Gradwohl, G., Nakanishi, S., Guillemot, F., and Kageyama, R. (1999). Hes1 and Hes5 as Notch effecttors in mammalian neuronal differentiation. EMBO J. 18, 2196-2207 https://doi.org/10.1093/emboj/18.8.2196
  38. Pascoal, S., Carvalho, C.R., Rodriguez-Leon, J., Delfini, M.C., Duprez, D., Thorsteinsdottir, S., and Palmeirim, I. (2007). A molecular clock operates during chick autopod proximal-distal outgrowth. J. Mol. Biol. 368, 303-309 https://doi.org/10.1016/j.jmb.2007.01.089
  39. Riedel-Kruse, I.H., Muller, C., and Oates, A.C. (2007). Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science 317, 1911-1915 https://doi.org/10.1126/science.1142538
  40. Ross, S.E., Greenberg, M.E., and Stiles, C.D. (2003). Basic helixloop-helix factors in cortical development. Neuron 39, 13-25 https://doi.org/10.1016/S0896-6273(03)00365-9
  41. Serth, K., Schuster-Gossler, K., Cordes, R., and Gossler, A. (2003). Transcriptional oscillation of Lunatic fringe is essential for somitogenesis. Genes Dev. 17, 912-925 https://doi.org/10.1101/gad.250603
  42. Shimojo, H., Ohtsuka, T., and Kageyama, R. (2008). Oscillations in notch signaling regulate maintenance of neural progenitors.Neuron 58, 52-64 https://doi.org/10.1016/j.neuron.2008.02.014
  43. Sommer, L., Ma, Q., and Anderson, D.J. (1996). neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci. 8, 221-241 https://doi.org/10.1006/mcne.1996.0060
  44. Tomita, K., Moriyoshi, K., Nakanishi, S., Guillemot, F., and Kageyama, R. (2000). Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J. 19, 5460-5472
  45. Yoshiura, S., Ohtsuka, T., Takenaka, Y., Nagahara, H., Yoshikawa, K., and Kageyama, R. (2007). Ultradian oscillations of Stat, Smad, and Hes1 expression in response to serum. Proc. Natl. Acad. Sci. USA 104, 11292-11297 https://doi.org/10.1073/pnas.0701837104

Cited by

  1. A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma Cells Is Required for Continuous Tumor Growth vol.141, pp.4, 2009, https://doi.org/10.1016/j.cell.2010.04.020
  2. FRS2α Regulates Erk Levels to Control a Self-Renewal Target Hes1 and Proliferation of FGF-Responsive Neural Stem/Progenitor Cells vol.28, pp.9, 2009, https://doi.org/10.1002/stem.488
  3. NOTCH, a new signaling pathway implicated in holoprosencephaly vol.20, pp.6, 2011, https://doi.org/10.1093/hmg/ddq556
  4. Wnt/β-catenin dependent cell proliferation underlies segmented lateral line morphogenesis vol.349, pp.2, 2009, https://doi.org/10.1016/j.ydbio.2010.10.022
  5. The importance of structured noise in the generation of self-organizing tissue patterns through contact-mediated cell–cell signalling vol.8, pp.59, 2011, https://doi.org/10.1098/rsif.2010.0488
  6. Sox9 Is Upstream of MicroRNA-140 in Cartilage vol.166, pp.1, 2009, https://doi.org/10.1007/s12010-011-9404-y
  7. Phosphatidylcholine-specific phospholipase C/heat shock protein 70 (Hsp70)/transcription factor B-cell translocation gene 2 signaling in rat bone marrow stromal cell differentiation to cholinergic neu vol.44, pp.12, 2009, https://doi.org/10.1016/j.biocel.2012.09.013
  8. Chiari Malformation Type I: A Case-Control Association Study of 58 Developmental Genes vol.8, pp.2, 2009, https://doi.org/10.1371/journal.pone.0057241
  9. Interactions between VEGFR and Notch signaling pathways in endothelial and neural cells vol.70, pp.10, 2009, https://doi.org/10.1007/s00018-013-1312-6