• Title/Summary/Keyword: Clinical pathways

Search Result 415, Processing Time 0.03 seconds

A Review of the Current State and Future Directions for Management of Scalp and Facial Vascular Malformations

  • Emma Hartman;Daniel M. Balkin;Alfred Pokmeng See
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.3
    • /
    • pp.315-325
    • /
    • 2024
  • Vascular malformations are structural abnormalities that are thought to result from errors in vasculogenesis and angiogenesis during embryogenesis. Vascular malformations of the scalp present unique management challenges due to aesthetic and functional implications. This review examines the pathophysiology, clinical presentation, and management techniques for six common types of vascular malformations of the face and scalp : infantile hemangioma, capillary malformations, venous malformations, lymphatic malformations, arteriovenous malformations, and arteriovenous fistulas. These lesions range from common to rare, and have very different natural histories and management paradigms. There has been increasing understanding of the molecular pathways that are altered in association with these vascular lesions and these molecular targets may represent novel strategies of treating lesions that have historically been approached from a structural perspective only.

Exploring the Potential of Glycolytic Modulation in Myeloid-Derived Suppressor Cells for Immunotherapy and Disease Management

  • Jisu Kim;Jee Yeon Choi;Hyeyoung Min;Kwang Woo Hwang
    • IMMUNE NETWORK
    • /
    • v.24 no.3
    • /
    • pp.26.1-26.19
    • /
    • 2024
  • Recent advancements in various technologies have shed light on the critical role of metabolism in immune cells, paving the way for innovative disease treatment strategies through immunometabolism modulation. This review emphasizes the glucose metabolism of myeloid-derived suppressor cells (MDSCs), an emerging pivotal immunosuppressive factor especially within the tumor microenvironment. MDSCs, an immature and heterogeneous myeloid cell population, act as a double-edged sword by exacerbating tumors or mitigating inflammatory diseases through their immune-suppressive functions. Numerous recent studies have centered on glycolysis of MDSC, investigating the regulation of altered glycolytic pathways to manage diseases. However, the specific changes in MDSC glycolysis and their exact functions continue to be areas of ongoing discussion yet. In this paper, we review a range of current findings, including the latest research on the alteration of glycolysis in MDSCs, the consequential functional alterations in these cells, and the outcomes of attempts to modulate MDSC functions by regulating glycolysis. Ultimately, we will provide insights into whether these research efforts could be translated into clinical applications.

8-60hIPP5m-Induced G2/M Cell Cycle Arrest Involves Activation of ATM/p53/p21cip1/waf1 Pathways and Delayed Cyclin B1 Nuclear Translocation

  • Zeng, Qi-Yan;Zeng, Lin-Jie;Huang, Yu;Huang, Yong-Qi;Zhu, Qi-Fang;Liao, Zhi-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4101-4107
    • /
    • 2014
  • Protein phosphatase 1 (PP1) is a major serine/threonine phosphatase that controls gene expression and cell cycle progression. The active mutant IPP5 ($8-60hIPP5^m$), the latest member of the inhibitory molecules for PP1, has been shown to inhibit the growth of human cervix carcinoma cells (HeLa). In order to elucidate the underlying mechanisms, the present study assessed overexpression of $8-60hIPP5^m$ in HeLa cells. Flow cytometric and biochemical analyses showed that overexpression of $8-60hIPP5^m$ induced G2/M-phase arrest, which was accompanied by the upregulation of cyclin B1 and phosphorylation of G2/M-phase proteins ATM, p53, $p21^{cip1/waf1}$ and Cdc2, suggesting that $8-60hIPP5^m$ induces G2/M arrest through activation of the ATM/p53/$p21^{cip1/waf1}$/Cdc2/cyclin B1 pathways. We further showed that overexpression of $8-60hIPP5^m$ led to delayed nuclear translocation of cyclin B1. $8-60hIPP5^m$ also could translocate to the nucleus in G2/M phase and interact with $pp1{\alpha}$ and Cdc2 as demonstrated by co-precipitation assay. Taken together, our data demonstrate a novel role for $8-60hIPP5^m$ in regulation of cell cycle in HeLa cells, possibly contributing to the development of new therapeutic strategies for cervix carcinoma.

Molecular Prognostic Profile of Egyptian HCC Cases Infected with Hepatitis C Virus

  • Zekri, Abdel-Rahman N.;Hassan, Zeinab K.;Bahnassy, Abeer A.;Sherif, Ghada M.;ELdahshan, Dina;Abouelhoda, Mohamed;Ali, Ahmed;Hafez, Mohamed M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5433-5438
    • /
    • 2012
  • Background: Hepatocellular carcinoma (HCC) is a common and aggressive malignancy. Despite of the improvements in its treatment, HCC prognosis remains poor due to its recurrence after resection. This study provides complete genetic profile for Egyptian HCC. Genome-wide analyses were performed to identify the predictive signatures. Patients and Methods: Liver tissue was collected from 31 patients with diagnosis of HCC and gene expression levels in the tumours and their adjacent non-neoplastic tissues samples were studied by analyzing changes by microarray then correlate these with the clinico-pathological parameters. Genes were validated in an independent set by qPCR. The genomic profile was associated with genetic disorders and cancer focused on gene expression, cell cycle and cell death. Molecular profile analysis revealed cell cycle progression and arrest at G2/M, but progression to mitosis; unregulated DNA damage check-points, and apoptosis. Result: Nine hundred fifty eight transcripts out of the 25,000 studied cDNAs were differentially expressed; 503 were up-regulated and 455 were down-regulated. A total of 19 pathways were up-regulated through 27 genes and 13 pathways were down-regulated through 19 genes. Thirty-seven genes showed significant differences in their expression between HCC cases with high and low Alpha Feto Protein ($AFP{\geq}600$ IU/ml). The validation for the microarray was done by real time PCR assay in which PPP3CA, ATG-5, BACE genes showed down-regulation and ABCG2, RXRA, ELOVL2, CXR3 genes showed up-regulation. cDNA microarrays showed that among the major upregulated genes in HCC are sets. Conclusion: The identified genes could provide a panel of new diagnostic and prognostic aids for HCC.

Sensitization of Cervical Carcinoma Cells to Paclitaxel by an IPP5 Active Mutant

  • Zeng, Qi-Yan;Huang, Yu;Zeng, Lin-Jie;Huang, Min;Huang, Yong-Qi;Zhu, Qi-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8337-8343
    • /
    • 2014
  • Paclitaxel is one of the best anticancer agents that has been isolated from plants, but its major disadvantage is its dose-limiting toxicity. In this study, we obtained evidence that the active mutant IPP5 ($8-60hIPP5^m$), the latest member of the inhibitory molecules for protein phosphatase 1, sensitizes human cervix carcinoma cells HeLa more efficiently to the therapeutic effects of paclitaxel. The combination of $8-60hIPP5^m$ with paclitaxel augmented anticancer effects as compared to paclitaxel alone as evidenced by reduced DNA synthesis and increased cytotoxicity in HeLa cells. Furthermore, our results revealed that $8-60hIPP5^m$ enhances paclitaxel-induced G2/M arrest and apoptosis, and augments paclitaxel-induced activation of caspases and release of cytochrome C. Evaluation of signaling pathways indicated that this synergism was in part related to downregulation of NF-${\kappa}B$ activation and serine/threonine kinase Akt pathways. We noted that $8-60hIPP5^m$ downregulated the paclitaxel-induced NF-${\kappa}B$ activation, $I{\kappa}B{\alpha}$ degradation, PI3-K activity and phosphorylation of the serine/threonine kinase Akt, a survival signal which in many instances is regulated by NF-${\kappa}B$. Together, our observations indicate that paclitaxel in combination with $8-60hIPP5^m$ may provide a therapeutic advantage for the treatment of human cervical carcinoma.

Molecular Classification of Commercial Spirulina Strains and Identification of Their Sulfolipid Biosynthesis Genes

  • Kwei, Chee Kuan;Lewis, David;King, Keith;Donohue, William;Neilan, Brett A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.359-365
    • /
    • 2011
  • Cyanobacterial strains of the genus Spirulina have recently been identified as an excellent source of sulfolipids, some of which possess anti-HIV properties. Thus, to investigate the distribution of sufolipid biosynthesis pathways in Spirulina, a genetic screening/phylogentic study was performed. Five different strains of Spirulina [Spirulina (Jiangmen), Spirulina sp., S. platensis, S. maxima, and Spirulina seawater] sourced from different locations were initially classified via 16S rDNA sequencing, and then screened for the presence of the sulfolipid biosynthesis genes sqdB and sqdX via a PCR. To assess the suitability of these strains for human consumption and safe therapeutic use, the strains were also screened for the presence of genes encoding nonribosomal peptide synthases (NRPSs) and polyketide synthases (PKSs), which are often associated with toxin pathways in cyanobacteria. The results of the 16S rDNA analysis and phylogenetic study indicated that Spirulina sp. is closely related to Halospirulina, whereas the other four Spirulina strains are closely related to Arthrospira. Homologs of sqdB and sqdX were identified in Spirulina (Jiangmen), Spirulina sp., S. platensis, and the Spirulina seawater. None of the Spirulina strains screened in this study tested positive for NRPS or PKS genes, suggesting that these strains do not produce NRP or PK toxins.

Triglyceride Up-regulates Expression of ABCG1 in PMA-induced THP-1 Macrophages Through Activation of JNK and p38 MAPK Pathways

  • Lim, Jaewon;Kim, Sung Hoon;Kang, Yeo Wool;Jung, Byung Chul;Kim, Hyun-Kyung;Lee, Juyeon;Lee, Dongsup;Rhee, Ki-Jong;Kim, Yoon Suk
    • Biomedical Science Letters
    • /
    • v.20 no.4
    • /
    • pp.237-243
    • /
    • 2014
  • Triglyceride (TG) can cause death of macrophages and formation of foam cells thereby increasing inflammation in atherosclerotic plaques. Accumulation of cholesterol in macrophages is another critical event that promotes development of inflammatory cardiovascular diseases. Several proteins are known to transport intracellular cholesterol outside of the cell and these proteins are thought to be protective against atherosclerosis pathogenesis. It is unknown whether TG can affect cholesterol efflux in macrophages. In the current study, we examined mRNA expression levels of genes that promote efflux of cholesterol (ABCA1, ABCG1 and SR-B1). We found that TG treated THP-1 macrophages exhibited an increase in ABCG1 expression in a dose- and time-dependent manner. In contrast, the expression of ABCA1 and SR-B1 remained unchanged. To identify cell signaling pathways that participate in up-regulation of ABCG1, THP-1 macrophages were treated with various cell signaling inhibitors. We found that inhibition of the JNK and p38 MAPK pathway completely abrogated up-regulation of ABCG1 whereas inhibition of MEK1 further enhanced ABCG1 expression in TG treated THP-1 macrophages. Also, TG induced phosphorylation of JNK and p38 MAPK in THP-1 macrophages. These results suggest that TG may potentially influence cholesterol efflux in macrophages.

Combination of Runx2 and BMP2 increases conversion of human ligamentum flavum cells into osteoblastic cells

  • Kim, Hyun-Nam;Min, Woo-Kie;Jeong, Jae-Hwan;Kim, Seong-Gon;Kim, Jae-Ryong;Kim, Shin-Yoon;Choi, Je-Yong;Park, Byung-Chul
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.446-451
    • /
    • 2011
  • The conversion of fibroblasts into osteoblasts requires the activation of key signaling pathways, including the BMP pathway. Although Runx2 is known to be a component of the BMP pathway, the combination of Runx2 and BMP2 has not yet been examined with respect to the conversion of fibroblasts into osteoblasts. Here, human ligamentum flavum (LF) fibroblast-like cells from six patients were tested for their conversion into osteoblasts using adenoviruses expressing Runx2 or BMP2. The forced expression of Runx2 or BMP2 in primary cultured LF cells resulted in a variety of proliferation and differentiation behaviors. Combined treatment of BMP2 plus Runx2 resulted in better osteoblastic differentiation than treatment with either component alone. These results indicate that the Runx2 and BMP2 pathways possess both common and independent target genes. Collectively, Runx2 plus BMP2 mediated efficient conversion of fibroblast-like LF cells into osteoblast-like cells, suggesting the possible use of these components for clinical applications such as spinal fusion.

Synergistic Effect of Resveratrol and Radiotherapy in Control of Cancers

  • Kma, Lakhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6197-6208
    • /
    • 2013
  • Cancers will continue to be a threat to health unless they can be controlled by combinations of treatment modalities. In this review, evaluate the role of resveratrol (RSV) as a radiosensitizing agent was evaluated and underlying mechanisms holistically explored in different cancer models focusing on therapeutic possibilities. The ability of RSV to modify the effect of radiation exposure in normal and cancer cells has indeed been shown quite convincingly, the combination of RSV and IR exhibiting synergistic effects on different cancer cells. This is relevant since controlled exposure to IR is one of the most frequently applied treatments in cancer patients. However, radiotherapy (XRT) treatment regimes are very often not effective in clinical practice as observed in patients with glioma, prostate cancer (PCa), melanoma, for example, largely due to tumour radioresistant properties. Sensitization of IR-induced apoptosis by natural products such as RSV is likely to be relevant in cancer control and treatment. However, all cancers do not respond to RSV+IR in a similar manner. Therefore, for those such as the radioresistant PCa or melanoma cells, the RSV+IR regime has to be very carefully chosen in order to achieve effective and desirable outcomes with minimum toxicity to normal cells. They are reports that the highest concentration of 100 ${\mu}M$ RSV and highest dose of 5 Gy IR are sufficient to kill cells by induction of apoptosis, indicating that RSV is effective in radiosensitizing otherwise radioresistant cells. In general, it has been shown in different cancer cells that RSV+XRT effectively act by enhancing expression of anti-proliferative and pro-apoptotic molecules, and inhibiting pro-proliferative and anti-apoptotic molecules, leading to induction of apoptosis through various pathways, and cell death. If RSV+XRT can suppress the signature of cancer stemness, enhance the radiosensitivity by either targeting the mitochondrial functionality or modulating the tumour necrosis factor-mediated or Fas-FasL-mediated pathways of apoptosis in different cancers, particularly in vivo, its therapeutic use in the control of cancers holds promise in the near future.

Roles of mTOR and p-mTOR in Gastrointestinal Stromal Tumors

  • Li, Jun-Chuan;Zhu, Hong-Yu;Chen, Ting-Xuan;Zou, Lan-Ying;Wang, Xiao-Yan;Zhao, Hui-Chuan;Xu, Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5925-5928
    • /
    • 2013
  • Objective: This study aimed to examine the relationship between expression of mammal target of rapamycin (mTOR) and phosphorylation of mTOR (p-mTOR) protein in the PI3K/Akt/mTOR signaling pathways in gastrointestinal stromal tumors and relatiuonships with clinical factors. Methods: Immunohistochemistry was used to detect the expression of the associated proteins mTOR, p-mTOR, and phosphorylation of the tumor suppressor genes PTEN, P27, VEGF, and EGFR in 40 cases of gastrointestinal stromal tumors, with division into a very low and low risk group as well as a moderate and high risk group. Results: The positive rate of mTOR and p-mTOR was significantly increased in the moderate and high risk group compared with the very low and low risk group. The difference was statistically significant (P<0.05). When grouped according to size, the positive mTOR expression rate exhibited a statistical difference (P<0.05), which was significantly increased in the group of tumors larger than 5 cm. The difference in the positive mTOR and p-mTOR expression rate exhibit no statistical significance among the PTEN, P27, VEGF, and EGFR expression subgroups (P>0.05). Conclusion: The different expressions of mTOR and p-mTOR in the signal transduction pathway of gastrointestinal stromal tumor in the different degree-of-risk groups suggested that the mTOR and p-mTOR of the signal transduction pathway serve an important function in the occurrence and development of gastrointestinal stromal tumors.