• Title/Summary/Keyword: Climate prediction systems

Search Result 108, Processing Time 0.022 seconds

Reliability Assessment of Temperature and Precipitation Seasonal Probability in Current Climate Prediction Systems (현 기후예측시스템에서의 기온과 강수 계절 확률 예측 신뢰도 평가)

  • Hyun, Yu-Kyung;Park, Jinkyung;Lee, Johan;Lim, Somin;Heo, Sol-Ip;Ham, Hyunjun;Lee, Sang-Min;Ji, Hee-Sook;Kim, Yoonjae
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.141-154
    • /
    • 2020
  • Seasonal forecast is growing in demand, as it provides valuable information for decision making and potential to reduce impact on weather events. This study examines how operational climate prediction systems can be reliable, producing the probability forecast in seasonal scale. A reliability diagram was used, which is a tool for the reliability by comparing probabilities with the corresponding observed frequency. It is proposed for a method grading scales of 1-5 based on the reliability diagram to quantify the reliability. Probabilities are derived from ensemble members using hindcast data. The analysis is focused on skill for 2 m temperature and precipitation from climate prediction systems in KMA, UKMO, and ECMWF, NCEP and JMA. Five categorizations are found depending on variables, seasons and regions. The probability forecast for 2 m temperature can be relied on while that for precipitation is reliable only in few regions. The probabilistic skill in KMA and UKMO is comparable with ECMWF, and the reliabilities tend to increase as the ensemble size and hindcast period increasing.

Assessment of the Prediction Performance of Ensemble Size-Related in GloSea5 Hindcast Data (기상청 기후예측시스템(GloSea5)의 과거기후장 앙상블 확대에 따른 예측성능 평가)

  • Park, Yeon-Hee;Hyun, Yu-Kyung;Heo, Sol-Ip;Ji, Hee-Sook
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.511-523
    • /
    • 2021
  • This study explores the optimal ensemble size to improve the prediction performance of the Korea Meteorological Administration's operational climate prediction system, global seasonal forecast system version 5 (GloSea5). The GloSea5 produces an ensemble of hindcast data using the stochastic kinetic energy backscattering version2 (SKEB2) and timelagged ensemble. An experiment to increase the hindcast ensemble from 3 to 14 members for four initial dates was performed and the improvement and effect of the prediction performance considering Root Mean Square Error (RMSE), Anomaly Correlation Coefficient (ACC), ensemble spread, and Ratio of Predictable Components (RPC) were evaluated. As the ensemble size increased, the RMSE and ACC prediction performance improved and more significantly in the high variability area. In spread and RPC analysis, the prediction accuracy of the system improved as the ensemble size increased. The closer the initial date, the better the predictive performance. Results show that increasing the ensemble to an appropriate number considering the combination of initial times is efficient.

Application of Land Initialization and its Impact in KMA's Operational Climate Prediction System (현업 기후예측시스템에서의 지면초기화 적용에 따른 예측 민감도 분석)

  • Lim, Somin;Hyun, Yu-Kyung;Ji, Heesook;Lee, Johan
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.327-340
    • /
    • 2021
  • In this study, the impact of soil moisture initialization in GloSea5, the operational climate prediction system of the Korea Meteorological Administration (KMA), has been investigated for the period of 1991~2010. To overcome the large uncertainties of soil moisture in the reanalysis, JRA55 reanalysis and CMAP precipitation were used as input of JULES land surface model and produced soil moisture initial field. Overall, both mean and variability were initialized drier and smaller than before, and the changes in the surface temperature and pressure in boreal summer and winter were examined using ensemble prediction data. More realistic soil moisture had a significant impact, especially within 2 months. The decreasing (increasing) soil moisture induced increases (decreases) of temperature and decreases (increases) of sea-level pressure in boreal summer and its impacts were maintained for 3~4 months. During the boreal winter, its effect was less significant than in boreal summer and maintained for about 2 months. On the other hand, the changes of surface temperature were more noticeable in the southern hemisphere, and the relationship between temperature and soil moisture was the same as the boreal summer. It has been noted that the impact of land initialization is more evident in the summer hemispheres, and this is expected to improve the simulation of summer heat wave in the KMA's operational climate prediction system.

Data-Based Model Approach to Predict Internal Air Temperature in a Mechanically-Ventilated Broiler House (데이터 기반 모델에 의한 강제환기식 육계사 내 기온 변화 예측)

  • Choi, Lak-yeong;Chae, Yeonghyun;Lee, Se-yeon;Park, Jinseon;Hong, Se-woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.27-39
    • /
    • 2022
  • The smart farm is recognized as a solution for future farmers having positive effects on the sustainability of the poultry industry. Intelligent microclimate control can be a key technology for broiler production which is extremely vulnerable to abnormal indoor air temperatures. Furthermore, better control of indoor microclimate can be achieved by accurate prediction of indoor air temperature. This study developed predictive models for internal air temperature in a mechanically-ventilated broiler house based on the data measured during three rearing periods, which were different in seasonal climate and ventilation operation. Three machine learning models and a mechanistic model based on thermal energy balance were used for the prediction. The results indicated that the all models gave good predictions for 1-minute future air temperature showing the coefficient of determination greater than 0.99 and the root-mean-square-error smaller than 0.306℃. However, for 1-hour future air temperature, only the mechanistic model showed good accuracy with the coefficient of determination of 0.934 and the root-mean-square-error of 0.841℃. Since the mechanistic model was based on the mathematical descriptions of the heat transfer processes that occurred in the broiler house, it showed better prediction performances compared to the black-box machine learning models. Therefore, it was proven to be useful for intelligent microclimate control which would be developed in future studies.

A Strategy of Assessing Climate Factors' Influence for Agriculture Output

  • Kuan, Chin-Hung;Leu, Yungho;Lee, Chien-Pang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1414-1430
    • /
    • 2022
  • Due to the Internet of Things popularity, many agricultural data are collected by sensors automatically. The abundance of agricultural data makes precise prediction of rice yield possible. Because the climate factors have an essential effect on the rice yield, we considered the climate factors in the prediction model. Accordingly, this paper proposes a machine learning model for rice yield prediction in Taiwan, including the genetic algorithm and support vector regression model. The dataset of this study includes the meteorological data from the Central Weather Bureau and rice yield of Taiwan from 2003 to 2019. The experimental results show the performance of the proposed model is nearly 30% better than MARS, RF, ANN, and SVR models. The most important climate factors affecting the rice yield are the total sunshine hours, the number of rainfall days, and the temperature.The proposed model also offers three advantages: (a) the proposed model can be used in different geographical regions with high prediction accuracies; (b) the proposed model has a high explanatory ability because it could select the important climate factors which affect rice yield; (c) the proposed model is more suitable for predicting rice yield because it provides higher reliability and stability for predicting. The proposed model can assist the government in making sustainable agricultural policies.

Estimation of Physical Climate Risk for Private Companies (민간기업을 위한 물리적 기후리스크 추정 연구)

  • Yong-Sang Choi;Changhyun Yoo;Minjeong Kong;Minjeong Cho;Haesoo Jung;Yoon-Kyoung Lee;Seon Ki Park;Myoung-Hwan Ahn;Jaehak Hwang;Sung Ju Kim
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.1-21
    • /
    • 2024
  • Private companies are increasingly required to take more substantial actions on climate change. This study introduces the principle and cases of climate (physical) risk estimation for 11 private companies in Korea. Climate risk is defined as the product of three major determinants: hazard, exposure, and vulnerability. Hazard is the intensity or frequency of weather phenomena that can cause disasters. Vulnerability can be reflected in the function that explains the relationship between past weather records and loss records. The final climate risk is calculated by multiplying the function by the exposure, which is defined as the area or value of the target area exposed to the climate. Future climate risk is estimated by applying future exposure to estimated future hazard using climate model scenarios or statistical trends based on weather data. The estimated climate risks are developed into three types according to the demand of private companies: i) climate risk for financial portfolio management, ii) climate risk for port logistics management, iii) climate risk for supply chain management. We hope that this study will contribute to the establishment of the climate risk management system in the Korean industrial sector as a whole.

Development of the Korea Ocean Prediction System

  • Suk, Moon-Sik;Chang, Kyung-Il;Nam, Soo-Yong;Park, Sung-Hyea
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.181-188
    • /
    • 2001
  • We describe here the Korea ocean prediction system that closely resembles operational numerical weather prediction systems. This prediction system will be served for real-time forecasts. The core of the system is a three-dimensional primitive equation numerical circulation model, based on ${\sigma}$-coordinate. Remotely sensed multi-channel sea surface temperature (MCSST) is imposed at the surface. Residual subsurface temperature is assimilated through the relationship between vertical temperature structure function and residual of sea surface height (RSSH) using an optimal interpolation scheme. A unified grid system, named as [K-E-Y], that covers the entire seas around Korea is used. We present and compare hindcasting results during 1990-1999 from a model forced by MCSST without incorporating RSSH data assimilation and the one with both MCSST and RSSH assimilated. The data assimilation is applied only in the East Sea, hence the comparison focuses principally on the mesoscale features prevalent in the East Sea. It is shown that the model with the data assimilation exhibits considerable skill in simulating both the permanent and transient mesoscale features in the East Sea.

  • PDF

Predictability of Sea Surface Temperature in the Northwestern Pacific simulated by an Ocean Mid-range Prediction System (OMIDAS): Seasonal Difference (북서태평양 중기해양예측모형(OMIDAS) 해면수온 예측성능: 계절적인 차이)

  • Jung, Heeseok;Kim, Yong Sun;Shin, Ho-Jeong;Jang, Chan Joo
    • Ocean and Polar Research
    • /
    • v.43 no.2
    • /
    • pp.53-63
    • /
    • 2021
  • Changes in a marine environment have a broad socioeconomic implication on fisheries and their relevant industries so that there has been a growing demand for the medium-range (months to years) prediction of the marine environment Using a medium-range ocean prediction model (Ocean Mid-range prediction System, OMIDAS) for the northwest Pacific, this study attempted to assess seasonal difference in the mid-range predictability of the sea surface temperature (SST), focusing on the Korea seas characterized as a complex marine system. A three-month re-forecast experiment was conducted for each of the four seasons in 2016 starting from January, forced with Climate Forecast System version 2 (CFSv2) forecast data. The assessment using relative root-mean-square-error was taken for the last month SST of each experiment. Compared to the CFSv2, the OMIDAS revealed a better prediction skill for the Korea seas SST, particularly in the Yellow sea mainly due to a more realistic representation of the topography and current systems. Seasonally, the OMIDAS showed better predictability in the warm seasons (spring and summer) than in the cold seasons (fall and winter), suggesting seasonal dependency in predictability of the Korea seas. In addition, the mid-range predictability for the Korea seas significantly varies depending on regions: the predictability was higher in the East Sea than in the Yellow Sea. The improvement in the seasonal predictability for the Korea seas by OMIDAS highlights the importance of a regional ocean modeling system for a medium-range marine prediction.

Prediction Skill for East Asian Summer Monsoon Indices in a KMA Global Seasonal Forecasting System (GloSea5) (기상청 기후예측시스템(GloSea5)의 여름철 동아시아 몬순 지수 예측 성능 평가)

  • Lee, So-Jeong;Hyun, Yu-Kyung;Lee, Sang-Min;Hwang, Seung-On;Lee, Johan;Boo, Kyung-On
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.293-309
    • /
    • 2020
  • There are lots of indices that define the intensity of East Asian summer monsoon (EASM) in climate systems. This paper assesses the prediction skill for EASM indices in a Global Seasonal Forecasting System (GloSea5) that is currently operating at KMA. Total 5 different types of EASM indices (WNPMI, EAMI, WYI, GUOI, and SAHI) are selected to investigate how well GloSea5 reproduces them using hindcasts with 12 ensemble members with 1~3 lead months. Each index from GloSea5 is compared to that from ERA-Interim. Hindcast results for the period 1991~2010 show the highest prediction skill for WNPMI which is defined as the difference between the zonal winds at 850 hPa over East China Sea and South China Sea. WYI, defined as the difference between the zonal winds of upper and lower level over the Indian Ocean far from East Asia, is comparatively well captured by GloSea5. Though the prediction skill for EAMI which is defined by using meridional winds over areas of East Asia and Korea directly affected by EASM is comparatively low, it seems that EAMI is useful for predicting the variability of precipitation by EASM over East Asia. The regressed atmospheric fields with EASM index and the correlation with precipitation also show that GloSea5 best predicts the synoptic environment of East Asia for WNPMI among 5 EASM indices. Note that the result in this study is limited to interpret only for GloSea5 since the prediction skill for EASM index depends greatly on climate forecast model systems.

Research on predicting changes in crop cultivation areas due to climate change: Focusing on Hallabong (기후변화에 따른 과수작물 재배지 변화 예측 연구: 한라봉을 중심으로)

  • Park, Hye Eun;Lee, Jong Tae
    • The Journal of Information Systems
    • /
    • v.33 no.1
    • /
    • pp.31-44
    • /
    • 2024
  • Purpose The purpose of this study is to use climate data to find the algorithm with the highest Hallabong production prediction ability and to predict future Hallabong production in areas where Hallabong cultivation is expected to be possible. Design/methodology/approach The research is conducted in two stages. In the first step, find the algorithm with the highest predictive power among XGBoost, Random Forest, SVM, and LSTM methodologies. In the second stage, the algorithm found in the first stage is applied to predict future Hallabong production in three regions where Hallabong production is expected to be possible. Findings As with many prediction studies, we found that XGBoost showed the highest prediction power. Even in areas where Hallabong production is expected to be possible, Hallabong production was predicted to be highest in Hongcheon, Gangwon-do, which has the highest latitude.