• Title/Summary/Keyword: Climate impact analysis

Search Result 486, Processing Time 0.03 seconds

Changes of the Forest Types by Climate Changes using Satellite imagery and Forest Statistical Data: A case in the Chungnam Coastal Ares, Korea (위성영상과 임상통계를 이용한 충남해안지역의 기후변화에 따른 임상 변화)

  • Kim, Chansoo;Park, Ji-Hoon;Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.523-538
    • /
    • 2011
  • This study analyzes the changes in the surface area of each forest cover, based on temperature data analysis and satellite imagery as the basic methods for the impact assessment of climate change on regional units. Furthermore, future changes in the forest cover are predicted using the double exponential smoothing method. The results of the study have shown an overall increase in annual mean temperature in the studied region since 1990, and an especially increased rate in winter and autumn compared to other seasons. The multi-temporal analysis of the changes in the forest cover using satellite images showed a large decrease of coniferous forests, and a continual increase in deciduous forests and mixed forests. Such changes are attributed to the increase in annual mean temperature of the studied regions. The analysis of changes in the surface area of each forest cover using the statistical data displayed similar tendencies as that of the forest cover categorizing results from the satellite images. Accordingly, rapid changes in forest cover following the increase of temperature in the studied regions could be expected. The results of the study of the forest cover surface using the double exponential smoothing method predict a continual decrease in coniferous forests until 2050. On the contrary, deciduous forests and mixed forests are predicted to show continually increasing tendencies. Deciduous forests have been predicted to increase the most in the future. With these results, the data on forest cover can be usefully applied as the main index for climate change. Further qualitative results are expected to be deduced from these data in the future, compared to the analyses of the relationship between tree species of forest and climate factors.

The Impact of Safety Climate and Fatigue on Safety Performance of Operating Room Nurses (수술실 간호사의 안전분위기와 피로 수준이 안전이행에 미치는 영향)

  • Choi, U-Eun;Kim, Hyun-Young
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.22 no.5
    • /
    • pp.471-479
    • /
    • 2016
  • Purpose: This study was conducted to evaluate the level of safety climate, fatigue, and safety performance and to identify the impact of safety climate and fatigue on the safety performance of operating room nurses. Methods: The study design was a descriptive survey. Participants were 174 operating room nurses from two general hospitals and two university hospitals in S and D cities. Three structurally designed questionnaires were used to evaluate their safety climate, fatigue, and safety performance. Collected data were analyzed using descriptive analysis, t-tests, ANOVAs, Pearson correlation coefficient, and stepwise multiple regression. Results: Safety performance of operating room nurses had a mean of 3.26 on a 5-point scale. 'Current department career'(${\beta}=.17$, p=.006) and 'safety climate (work-unit contribution) (${\beta}=.63$, p<.001) accounted for 39% of the variance in operating room nurses' safety performance. Conclusion: Findings indicate that work-unit contribution towards safety climate is an important factor in increasing operating room nurses' safety performance. Therefore, it is essential to find motivational properties consistent with the characteristics of the operating room environment.

Diffusion Simulation Using Envi-Met. in Urban Planetary Boundary Layer (Envi-Met.을 이용한 도심 대기경계층 내 확산장 변화 수치 모의)

  • Choi, Hyun-Jeong
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.357-371
    • /
    • 2016
  • Buildings in the city acts as a cause of distorted wind direction, wind speed, causing the stagnation of the air flow. In the recent trend of climate change can not but consider the temperature rise of the urbanization. This study was aimed to analyze the thermal comfort of planetary boundary layer in different artificial constructions areas which has a direct impact on urban climate, and estimating the warming phenomena. Envi-met model was used to consider the urban structure associated with urban growth in order to precisely determine the impact of the building on the city weather condition. The analyzed values of thermal comfort index were temperature, wind speed, horizontal and vertical turbulent diffusivity. In particular, analysis of the PPD(Predicted Percentage of Dissatisfied) represents the human thermal comfort. In this study, by adjusting the arrangement and proportion of the top floor building in the urban it was found that the inflow of the fresh air and cooling can be derived low PPD. Vertical heat flux amount of the city caused by climate change was a factor to form a high potential temperature in the city and the accumulation of cold air does not appear near the surface. Based on this, to make the city effectively respond to climate change may require a long-term restructuring of urban spatial structure and density management.

Monitoring regional inequalities in climate change risk - A Focus on Heatwave - (기후변화 리스크의 지역 불평등 모니터링 : 폭염을 중심으로)

  • Kim, Geun-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.97-107
    • /
    • 2021
  • Abnormal climate caused by climate change causes enormous social and economic damage. And such damage and its impact may vary depending on the location and regional characteristics of the region and the social and economic conditions of local residents. Therefore, it is necessary to continuously monitor whether there are indicators that are weaker than other regions among the detailed indicators that constitute the risk, exposure and vulnerability of climate change risk. In this study, the concept of climate change risk was used for heatwave to determine regional inequality of climate change risk. In other words, it was judged that inequality in climate change risk occurred in regions with high risk but high exposure and low vulnerability compared to other regions. As a result of the analysis, it was found that 13 local governments in Korea experienced regional inequality in climate change risk. In order to resolve regional inequality in climate change risks, the current status of regional inequality in climate change should be checked based on the analysis proposed in this study, there is a need for an evaluation and monitoring system that can provide appropriate feedback on areas where inequality has occurred. This continuous evaluation and monitoring-based feedback system is expected to be of great help in resolving regional inequality in climate change risks.

Analysis of the Impact of Heatwaves in Gwangju using Logistic Regression and Discriminant Analysis (로지스틱 회귀분석과 판별분석을 활용한 광주광역시의 폭염에 미치는 영향분석)

  • Youn Su Kim;Yeong Seon Kong;In Hong Chang
    • Journal of Integrative Natural Science
    • /
    • v.17 no.2
    • /
    • pp.33-41
    • /
    • 2024
  • Abnormal climate is a phenomenon in which meteorological factors such as temperature and precipitation are significantly higher or lower than normal, and is defined by the World Meteorological Organization as a 30-year period. However, over the past 30 years, abnormal climate phenomena have occurred more frequently around the world than in the past. In Korea, abnormal climate phenomena such as abnormally high temperatures on the Korean Peninsula, drought, heatwave and heavy rain in summer are occurring in March 2023. Among them, heatwaves are expected to increase in frequency compared to other abnormal climates. This suggests that heatwave should be recognised as a disaster rather than just another extreme weather event. According to several previous studies, greenhouse gases and meteorological factors are expected to affect heatwaves, so this paper uses logistic regression and discriminant analysis on meteorological element data and greenhouse gas data in Gwangju from 2008 to 2022. We analyzed the impact of heatwaves. As a result of the analysis, greenhouse gases were selected as effective variables for heatwaves compared to the past, and among them, chlorofluorocarbons were judged to have a stronger effect on heatwaves than other greenhouse gases. Since greenhouse gases have a significant impact on heatwaves, in order to overcome heatwaves and abnormal climates, greenhouse gases must be minimized to overcome heatwaves and abnormal climates.

A Study on the Curriculum Development for Climate Change and Cultural Heritage (기후변화대응을 위한 문화유산 교육과정 개발 방안 연구)

  • Lho, Kyung-Min
    • Journal of architectural history
    • /
    • v.32 no.3
    • /
    • pp.39-51
    • /
    • 2023
  • This study aims to develop a cultural heritage curriculum for climate change and present educational directions for cultural heritage and climate change impact in the future. In this study, the role and necessity of cultural heritage education for climate change were first discussed based on previous studies on climate change and cultural heritage. Next, the current status analysis of educational cases related to climate change and cultural heritage was conducted based on educational manuals, curriculum, and heritage competency systems associated with climate change. Finally, we propose a plan to develop a curriculum to cope with climate change and cultural heritage for graduate students in higher education institutions based on the four components of developing a curriculum. In future studies, we intend to propose guidelines for designing educational manuals and specific curricula for each educational target to cope with the climate change of cultural heritage presented in this study.

Reviewing of Integrated Assessment of the Impacts of Climate Change and Sea-Level Rise on Agricultural Sector (기후변화·해수면 상승에 따른 농업부문 통합평가 사례연구 비교분석 및 개선방안)

  • Ahn, SoEun;Oh, SeoYun
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.299-314
    • /
    • 2016
  • The aim of this paper is to review integrated assessment studies conducted to address the impacts of climate change sea-level rise on agricultural sector and to derive suggestions for improving the integrated assessment process to assist decision-makers in establishing climate change adaptation policy. We collect integrated assessment studies which are based on the impact-pathway analysis, compare their step-by-step procedures and identify main factors addressed in each step. The assessment process is typically carried out in the sequence of scenario development, determination of assessment scope, physical impact assessment, economic analysis and synthesis of the outcomes from each step. We identify two types of integrated assessment. The first one examines the impacts of changes in temperature and/or precipitation on the crop-cultivation patterns and/or agricultural productivity and resulting economic effects on agricultural sector. The other investigates the impacts of sea-level rise on land use/coverage and resulting economic damages in terms of land-value loss where the effects on agriculture is treated as one sector among others. To enhance integrated assessment, we suggest that 1) scenarios need to incorporate the effects of climate change and sea-level rise simultaneously, 2) scope of the assessment needs to be extended to include ecosystem services as well as crop production, 3) social and cultural aspects need to be considered in addition to economic analysis, and 4) synthesis of the outcomes from each step should be able to combine quantitative as well as qualitative information.

Effects of Clime Change on Spatio-Temporal Behavior of Drought Using SAD Analysis (SAD 해석을 이용한 기후변화가 가뭄의 시공간적 거동에 미치는 영향분석)

  • Choi, Chi-Hyun;Choi, Dae-Gyu;Kim, Eung-Seock;Kim, Sang-Dan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.89-97
    • /
    • 2010
  • In this study, the impact of climate change on the spatio-temporal behavior of extreme drought events is investigated by comparing drought severity-area-duration curves under present and future climate conditions. In our climate-change impact experiments, the future climate is based on two GCMs(CGCM3.1-T63 and CSIRO-MK3.0). As a result, in the case of CGCM3.1-T63 future drought events are similar to the present, but in the case of CSIRO-MK3.0 future drought risk is likely to increase. Such results indicate that a climate change vulnerability assessment for present water resources supply system is urgent.

Uncertainty in Regional Climate Change Impact Assessment using Bias-Correction Technique for Future Climate Scenarios (미래 기상 시나리오에 대한 편의 보정 방법에 따른 지역 기후변화 영향 평가의 불확실성)

  • Hwang, Syewoon;Her, Young Gu;Chang, Seungwoo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.95-106
    • /
    • 2013
  • It is now generally known that dynamical climate modeling outputs include systematic biases in reproducing the properties of atmospheric variables such as, preciptation and temerature. There is thus, general consensus among the researchers about the need of bias-correction process prior to using climate model results especially for hydrologic applications. Among the number of bias-correction methods, distribution (e.g., cumulative distribution fuction, CDF) mapping based approach has been evaluated as one of the skillful techniques. This study investigates the uncertainty of using various CDF mapping-based methods for bias-correciton in assessing regional climate change Impacts. Two different dynamicailly-downscaled Global Circulation Model results (CCSM and GFDL under ARES4 A2 scenario) using Regional Spectial Model for retrospective peiod (1969-2000) and future period (2039-2069) were collected over the west central Florida. Total 12 possible methods (i.e., 3 for developing distribution by each of 4 for estimating biases in future projections) were examined and the variations among the results using different methods were evaluated in various ways. The results for daily temperature showed that while mean and standard deviation of Tmax and Tmin has relatively small variation among the bias-correction methods, monthly maximum values showed as significant variation (~2'C) as the mean differences between the retrospective simulations and future projections. The accuracy of raw preciptiation predictions was much worse than temerature and bias-corrected results appreared to be more significantly influenced by the methodologies. Furthermore the uncertainty of bias-correction was found to be relevant to the performance of climate model (i.e., CCSM results which showed relatively worse accuracy showed larger variation among the bias-correction methods). Concludingly bias-correction methodology is an important sourse of uncertainty among other processes that may be required for cliamte change impact assessment. This study underscores the need to carefully select a bias-correction method and that the approach for any given analysis should depend on the research question being asked.

Exploring the Complexities of Dams' Impact on Transboundary Flow: A Meta-Analysis of Climate and Basin Factors

  • Abubaker Omer;Hyungjun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.177-177
    • /
    • 2023
  • The impacts of dams on transboundary flow are complex and challenging to project and manage, given the potential moderating influence of a broad range of anthropogenic and natural factors. This study presents a global meta-analysis of 168 studies that examines the effect magnitude of dams on downstream seasonal, annual flow, and hydrological extremes risk on 39 hotspot transboundary river basins. The study also evaluates the impact of 13 factors, such as climate, basin characteristics, dams' design and types, level of transboundary cooperation, and socioeconomic indicators, on the heterogeneity of outcomes. The findings reveal that moderators significantly influence the impact of dams on downstream flow, leading to considerable heterogeneity in outcomes. Transboundary cooperation emerges as the key factor that determines the severity of dams' effect on both dry and wet season's flows at a significance level of 0.01 to 0.05, respectively. Specifically, the presence of water-supply and irrigation dams has a significant (0.01) moderating effect on dry-season flow across basins with high transboundary cooperation. In contrast, for wet-season flow, the basin's vulnerability to climate extremes is associated with a large negative effect size. The various moderators have varying degrees of influence on the heterogeneity of outcomes, with the aridity index, population density, GDP, and risk level of hydro-political tension being the most significant factors for dry-season flow, and the risk level of hydro-political tension and basin vulnerability to climate extremes being the most significant for wet-season flow. The results suggest that transboundary cooperation is crucial for managing the impacts of dams on downstream flow, and that various other factors, such as climate, basin characteristics, and socioeconomic indicators, have significant moderating effects on the outcomes. Thus, context-specific approaches are necessary when predicting and managing the impacts of dams on transboundary flow.

  • PDF