• Title/Summary/Keyword: Climate effect

Search Result 1,626, Processing Time 0.031 seconds

Global, Remote, and Local Effects on the Mediterranean Climate in Present-Day Simulations (현재 기후 모의실험에서 나타나는 지중해의 기후에 대한 전 지구, 원격, 지역 영향들)

  • Kim, Go-Un;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.311-318
    • /
    • 2020
  • Impacts on the atmospheric circulation and ocean system over the Mediterranean during boreal summer are investigated using Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations (from 1911 to 2005). As the climate warms, global and remote effects lead to a strengthening in descending motion, an increase in sea surface temperature (SST) and surface dryness, but a decrease in marine primary production over the Western Mediterranean. The global effect is estimated from interannual variability over the global mean SST and the remote effect is driven by diabatic forcing generated from the South and East Asian summer monsoons. On the other hand, a local contribution leads to the strengthened descending motion and increased surface dryness over the Eastern Mediterranean, whereas the marine primary production over this region tends to increase due to possibly the urban wastewater and sewage. Our result suggests that particular attention needs to be paid to conserve the marine ecosystem over the Mediterranean.

Climate Influences of Galactic Cosmic Rays (GCR): Review and Implications for Research Policy (우주기원의 고에너지 입자가 기후에 미치는 영향: 연구 현황과 정책적 시사점)

  • Kim, Jiyoung;Jang, Kun-Il
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.499-509
    • /
    • 2017
  • Possible links among cosmic ray, cloud, and climate have scientific uncertainties. The reputed topics have been highly controversial during several decades. A link between the atmospheric ionization by galactic cosmic rays (GCR), which is modulated by solar activities, and global cloud cover was firstly proposed in 1997. Some researchers suggested that the GCR can stimulate the formation of cloud condensation nuclei (CCN) in the atmosphere, and then the higher CCN concentrations may lead to an increase of cloud cover, resulting in a cooling of the Earth's climate, and vise versa. The CLOUD (Cosmic leaving outdoor droplets) experiment was designed to study the effect of GCR on the formation of atmospheric aerosols and clouds under precisely controlled laboratory conditions. A state-of-the-art chamber experiment has greatly advanced our scientific understanding of the aerosol formation in early stage and its nucleation processes if the GCR effect is considered or not. Many studies on the climate-GCR (or space weather) connection including the CLOUD experiment have been carried out during the several decades. Although it may not be easy to clarify the physical connection, the recent scientific approaches such as the laboratory experiments or modeling studies give some implications that the research definitively contributed to reduce the scientific uncertainties of natural and anthropogenic aerosol radiative forcing as well as to better understand the formation processes of fine particulate matters as an important parameter of air quality forecast.

Quantitative Study on the Effect of the Building Composition on the Urban Thermal Environment (건물군 조건이 도시 열환경에 미치는 영향에 관한 정량적 검토)

  • Yeo, In-Ae;Yoko, Kamata;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.180-183
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed by 3-Dimensional Urban Canopy Model. The characteristics of urban climate was analyzed combining artificial land coverage, building size, heat production from the air conditioning and topographic conditions as physical variables which affects urban climate characteristics. The results are as follows. (1)The aspects of the urban climatal change is derived to be related to the combination of the building coverage ratio, building height and shading area. (2)Whole heat generation was influenced by the convective sensible heat at the lower building height and by the artificial heat generation at the higher one over 20-story building influence to some extent of the building coverage ratio. The effect of the altitude is not more considerable than the other variables as below $1^{\circ}C$ of the air temperature.

  • PDF

Clustering of extreme winds in the mixed climate of South Africa

  • Kruger, A.C.;Goliger, A.M.;Retief, J.V.;Sekele, S.S.
    • Wind and Structures
    • /
    • v.15 no.2
    • /
    • pp.87-109
    • /
    • 2012
  • A substantial part of South Africa is subject to more than one strong wind source. The effect of that on extreme winds is that higher quantiles are usually estimated with a mixed strong wind climate estimation method, compared to the traditional Gumbel approach based on a single population. The differences in the estimated quantiles between the two methods depend on the values of the Gumbel distribution parameters for the different strong wind mechanisms involved. Cluster analysis of the distribution parameters provides a characterization of the effect of the relative differences in their values, and therefore the dominance of the different strong wind mechanisms. For gusts, cold fronts tend to dominate over the coastal and high-lying areas, while other mechanisms, especially thunderstorms, are dominant over the lower-lying areas in the interior. For the hourly mean wind speeds cold fronts are dominant in the south-west, south and east of the country. On the West Coast the ridging of the Atlantic Ocean high-pressure system dominate in the south, while the presence of a deep trough or coastal low pressure system is the main strong wind mechanism in the north. In the central interior cold fronts tend to share their influence almost equally with other synoptic-scale mechanisms.

Temporal and Spatial Variation of Soil Moisture in Upland Soil using AMSR2 SMC

  • Na, Sang-Il;Lee, Kyoung-Do;Kim, Sook-Kyoung;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.658-665
    • /
    • 2015
  • Temporal and spatial variation of soil moisture is important for understanding patterns of climate change, for developing and evaluating land surface models, for designing surface soil moisture observation networks, and for determining the appropriate resolution for satellite-based remote sensing instruments for soil moisture. In this study, we measured several soil moistures in upland soil using Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Content (SMC) during eight-month period in Chungbuk province. The upland soil moisture properties were expressed by simple statistical methods (average, standard deviation and coefficient of variation) from the monthly context. Supplementary studies were also performed about the effect of top soil texture on the soil moisture responses. If the results from this study were utilized well in specific cities and counties in Korea, it would be helpful to establish the countermeasures and action plans for preventing disasters because it was possible to compare with the relationship between soil moisture and top soil texture of each region. And it would be the fundamental data for estimating the effect of future agricultural plan.

Influence of Leadership Style on Affect Climate and Organizational Performance in Korean Export Manufacturing Enterprises (한국 수출제조기업의 리더십 스타일이 정서분위기와 조직성과에 미치는 영향)

  • Kim, Dae-Gon;Kim, Hag-Min
    • Korea Trade Review
    • /
    • v.44 no.3
    • /
    • pp.203-226
    • /
    • 2019
  • This study incorporates the structural relationships between leadership styles (LS), affect climate (AC), and organizational performance (OP) in Korean export manufacturing companies with three or more overseas subsidiaries. A theoretical model is suggested with the following empirical results. First, the positive effect of engaging leadership (EL) on organizational citizenship behavior (OCB), as well as of engaging leadership, involving leadership (IL), and goal-oriented leadership (GL) on team performance (TP), proved to be significant. Second, both engaging leadership and goal-oriented leadership have significant positive effects on optimism, while involving leadership has significant negative effects on pessimism. Third, only optimism has a positive (+) effect on OCB and TP. The mediating effects were proved to be significant in two paths: one in EL->optimism->OCB and the other in EL->optimism->TP. Finally, in responding to rapid changes in the external environment of exporting companies, the engaging leadership is a key source of organizational performance by forming a favorable affect climate. Therefore, top management should recognize the role of team leaders and strengthen their leadership training. In addition, it was confirmed that leaders with emotional intelligence that can respond to the affects of members play a more important role in forming an optimistic climate in Korea export manufacturing enterprises with foreign subsidiaries.

The Effect of Urban and Climate Characteristics on Energy Resilience - Focusing on Blackout Time - (도시 및 기후특성이 에너지 회복력에 미치는 영향 - 정전발생시간을 중심으로 -)

  • Lee, DongSung;Moon, Tae-Hoon
    • Journal of Korea Planning Association
    • /
    • v.54 no.4
    • /
    • pp.122-130
    • /
    • 2019
  • The purpose of this study is to analyze effect of climate and urban factors on energy resilience, and to explore policy alternatives to strengthen resilience of energy system. For this purpose, this study used extensive literature review on resilience studies and multiple regression analysis. In this study, blackout time was set as a dependent variable. And the independent variables were divided into climate and urban (robustness, countermeasure capacity) characteristics. As a result of the analysis, in terms of climate characteristics, maximum wind speed and cooling/heating degree-day have statistically significant impact on blackout time. With regard to urban characteristics, number of consumer, ratio of deteriorated housing and coast dummy variables have statistically significant impact on blackout time. And the ratio of government employees and road ratio were found to be the most influencing factors to shorten time taken to restore original level of electricity supply. Based on the study results, several policy suggestions to improve energy resilience were made such as continuous management of vulnerable areas and strengthening disaster response services. This study only considered engineering dimension of resilience. Further studies need to be approached on ecological & social-ecological dimension.

Preliminary Feasibility Study on Wind and Solar Hybrid Power Systems based on Venturi Effects for Buildings (벤투리 효과를 활용한 도심형 건물용 하이브리드 풍력 및 태양광 발전 시스템 기초타당성 예비연구)

  • Suhyun Kim;Yoonsoo Kim;Sumin Park;Jihyeon An;Sanghun Lee
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • Recently, the use of renewable energy has been increasing to achieve carbon neutrality. The concept of a zero-energy building is also attracting attention. In this study, a preliminary study was conducted to analyze the feasibility of a hybrid wind and solar power generation system between buildings that utilize the building wind generated by the Venturi effect. For this purpose, the wind speed and sunshine hours were monitored in the area where the building wind blows by the Venturi effect, and the power generation depending on system types, areas, and season was estimated. Consequently, the wind power generation system showed a larger amount of power per area than solar power. The wind power systems can generate larger power if wind power blades are installed along the height of the building. As a preliminary study, this study verified the feasibility of the system utilizing building wind and suggested follow-up studies.

Selecting Climate Change Scenarios Reflecting Uncertainties (불확실성을 고려한 기후변화 시나리오의 선정)

  • Lee, Jae-Kyoung;Kim, Young-Oh
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.149-161
    • /
    • 2012
  • Going by the research results of the past, of all the uncertainties resulting from the research on climate change, the uncertainty caused by the climate change scenario has the highest degree of uncertainty. Therefore, depending upon what kind of climate change scenario one adopts, the projection of the water resources in the future will differ significantly. As a matter of principle, it is highly recommended to utilize all the GCM scenarios offered by the IPCC. However, this could be considered to be an impractical alternative if a decision has to be made at an action officer's level. Hence, as an alternative, it is deemed necessary to select several scenarios so as to express the possible number of cases to the maximum extent possible. The objective standards in selecting the climate change scenarios have not been properly established and the scenarios have been selected, either at random or subject to the researcher's discretion. In this research, a new scenario selection process, in which it is possible to have the effect of having utilized all the possible scenarios, with using only a few principal scenarios and maintaining some of the uncertainties, has been suggested. In this research, the use of cluster analysis and the selection of a representative scenario in each cluster have efficiently reduced the number of climate change scenarios. In the cluster analysis method, the K-means clustering method, which takes advantage of the statistical features of scenarios has been employed; in the selection of a representative scenario in each cluster, the selection method was analyzed and reviewed and the PDF method was used to select the best scenarios with the closest simulation accuracy and the principal scenarios that is suggested by this research. In the selection of the best scenarios, it has been shown that the GCM scenario which demonstrated high level of simulation accuracy in the past need not necessarily demonstrate the similarly high level of simulation accuracy in the future and various GCM scenarios were selected for the principal scenarios. Secondly, the "Maximum entropy" which can quantify the uncertainties of the climate change scenario has been used to both quantify and compare the uncertainties associated with all the scenarios, best scenarios and the principal scenarios. Comparison has shown that the principal scenarios do maintain and are able to better explain the uncertainties of all the scenarios than the best scenarios. Therefore, through the scenario selection process, it has been proven that the principal scenarios have the effect of having utilized all the scenarios and retaining the uncertainties associated with the climate change to the maximum extent possible, while reducing the number of scenarios at the same time. Lastly, the climate change scenario most suitable for the climate on the Korean peninsula has been suggested. Through the scenario selection process, of all the scenarios found in the 4th IPCC report, principal climate change scenarios, which are suitable for the Korean peninsula and maintain most of the uncertainties, have been suggested. Therefore, it is assessed that the use of the scenario most suitable for the future projection of water resources on the Korean peninsula will be able to provide the projection of the water resources management that maintains more than 70~80% level of uncertainties of all the scenarios.

Exploring the Complexities of Dams' Impact on Transboundary Flow: A Meta-Analysis of Climate and Basin Factors

  • Abubaker Omer;Hyungjun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.177-177
    • /
    • 2023
  • The impacts of dams on transboundary flow are complex and challenging to project and manage, given the potential moderating influence of a broad range of anthropogenic and natural factors. This study presents a global meta-analysis of 168 studies that examines the effect magnitude of dams on downstream seasonal, annual flow, and hydrological extremes risk on 39 hotspot transboundary river basins. The study also evaluates the impact of 13 factors, such as climate, basin characteristics, dams' design and types, level of transboundary cooperation, and socioeconomic indicators, on the heterogeneity of outcomes. The findings reveal that moderators significantly influence the impact of dams on downstream flow, leading to considerable heterogeneity in outcomes. Transboundary cooperation emerges as the key factor that determines the severity of dams' effect on both dry and wet season's flows at a significance level of 0.01 to 0.05, respectively. Specifically, the presence of water-supply and irrigation dams has a significant (0.01) moderating effect on dry-season flow across basins with high transboundary cooperation. In contrast, for wet-season flow, the basin's vulnerability to climate extremes is associated with a large negative effect size. The various moderators have varying degrees of influence on the heterogeneity of outcomes, with the aridity index, population density, GDP, and risk level of hydro-political tension being the most significant factors for dry-season flow, and the risk level of hydro-political tension and basin vulnerability to climate extremes being the most significant for wet-season flow. The results suggest that transboundary cooperation is crucial for managing the impacts of dams on downstream flow, and that various other factors, such as climate, basin characteristics, and socioeconomic indicators, have significant moderating effects on the outcomes. Thus, context-specific approaches are necessary when predicting and managing the impacts of dams on transboundary flow.

  • PDF