• Title/Summary/Keyword: Climate Indices

Search Result 259, Processing Time 0.019 seconds

Plant Species Richness in Korea Utilizing Integrated Biological Survey Data (생물기초조사 통합자료를 활용한 우리나라 식물종 풍부도 분석)

  • Seungbum Hong;Jieun Oh;Jaegyu Cha;Kyungeun Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.363-374
    • /
    • 2023
  • The limitation in deriving the species richness representing the entire country of South Korea lies in its relatively short history of species field observations and the scattered observation data, which has been collected by various organizations in different fields. In this study, a comprehensive compilation of the observation data for plants held by agencies under the Ministry of Environment was conducted, enabling the construction of a time series dataset spanning over 100 years. The data integration was carried out using minimal criteria such as species name, observed location, and time (year) followed by data verification and correction processes. Based on the integrated plant species data, the comprehensive collection of plant species in South Korea has occurred predominantly since 2000, and the number of plant species explored through these surveys appears to be converging recently. The collection of species survey data necessary for deriving national-level biodiversity information has recently begun to meet the necessary conditions. Applying the Chao 2 method, the species richness of indigenous plants estimated at 3,182.6 for the 70-year period since 1951. A minimum cumulative period of 7 years is required for this estimation. This plant species richness from this study can be a baseline to study future changes in species richness in South Korea. Moreover, the integrated data with the estimation method for species richness used in this study appears to be applicable to derive regional biodiversity indices such as for local government units as well.

A Suggestion for Definition of El Niño/La Niña (엘니뇨/라니냐 정의에 대한 제언)

  • Son, Hye-Young;Kug, Jong-Seong;Yeh, Sang-Wook;Kim, Hyun-Kyung;Park, E-Hyung
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.63-71
    • /
    • 2013
  • KMA is operationally monitoring El Ni$\tilde{n}$o and La Ni$\tilde{n}$a events, which have tremendous impacts on global climate. Many scientific studies have used to define onset of El Ni$\tilde{n}$o and La Ni$\tilde{n}$a events based on the moving average and persistency of SST indices, and KMA has adopted such definition. Though the definition has been widely accepted, in the operational aspect there is a critical problem to use moving average and condition for the persistence. Because the future values for the SST indices cannot be used in the operational monitoring, the onset timing in El Ni$\tilde{n}$o and La Ni$\tilde{n}$a can be significantly delayed. We suggest here an appropriate definition of El Ni$\tilde{n}$o and La Ni$\tilde{n}$a events in the operational aspect. Instead of using the moving average and the condition for the persistence, the onset is defined based on NINO3.4 SST during last 3 months. In order to compare the new definition with the current KMA definition, we applied them to recent 60-years SST data. It is clear that the new definition can declare the onset timing of El Ni$\tilde{n}$o and La Ni$\tilde{n}$a several months earlier than that of the KMA definition. It suggest that the new definition is more appropriate to the operational monitoring on El Ni$\tilde{n}$o and La Ni$\tilde{n}$a.

Automatic Change Detection of MODIS NDVI using Artificial Neural Networks (신경망을 이용한 MODIS NDVI의 자동화 변화탐지 기법)

  • Jung, Myung-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.83-89
    • /
    • 2012
  • Natural Vegetation cover, which is very important earth resource, has been significantly altered by humans in some manner. Since this has currently resulted in a significant effect on global climate, various studies on vegetation environment including forest have been performed and the results are utilized in policy decision making. Remotely sensed data can detect, identify and map vegetation cover change based on the analysis of spectral characteristics and thus are vigorously utilized for monitoring vegetation resources. Among various vegetation indices extracted from spectral reponses of remotely sensed data, NDVI is the most popular index which provides a measure of how much photosynthetically active vegetation is present in the scene. In this study, for change detection in vegetation cover, a Multi-layer Perceptron Network (MLPN) as a nonparametric approach has been designed and applied to MODIS/Aqua vegetation indices 16-day L3 global 250m SIN Grid(v005) (MYD13Q1) data. The feature vector for change detection is constructed with the direct NDVI diffenrence at a pixel as well as the differences in some subset of NDVI series data. The research covered 5 years (2006-20110) over Korean peninsular.

Improvement and evaluation of flood control safety utilizing a flood risk map - Yeong-Seomjin River Basin - (홍수위험지도를 활용한 치수안전도 방법 개선 및 평가 - 영·섬진강 유역중심으로 -)

  • Eo, Gyu;Lee, Sung Hyun;Lim In Gyu;Lee, Gyu Won;Kim, Ji Sung
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.21-33
    • /
    • 2024
  • Recently, the patterns of climate change-induced disasters have become more diverse and extensive. To develop an effective flood control plan, Korea has incorporated the concept of Potential Flood Damage (PFD) into the Long-Term Comprehensive Water Resources Plan to assess flood risk. However, concerns regarding the PFD have prompted numerous studies. Previous research primarily focused on modifying and augmenting the PFD index or introducing new indices. This study aims to enhance the existing flood control safety evaluation method by utilizing a flood risk map that incorporates risk indices, specifically focusing on the Yeong-Seomjin river basin. The study introduces three main evaluation approaches: risk and potential analysis, PFD and flood management level analysis, and flood control safety evaluation. The proposed improved evaluation method is expected to be instrumental in evaluating various flood control safety measures and formulating flood control plans.

Development of a Storage Level and Capacity Monitoring and Forecasting Techniques in Yongdam Dam Basin Using High Resolution Satellite Image (고해상도 위성자료를 이용한 용담댐 유역 저수위/저수량 모니터링 및 예측 기술 개발)

  • Yoon, Sunkwon;Lee, Seongkyu;Park, Kyungwon;Jang, Sangmin;Rhee, Jinyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1041-1053
    • /
    • 2018
  • In this study, a real-time storage level and capacity monitoring and forecasting system for Yongdam Dam watershed was developed using high resolution satellite image. The drought indices such as Standardized Precipitation Index (SPI) from satellite data were used for storage level monitoring in case of drought. Moreover, to predict storage volume we used a statistical method based on Principle Component Analysis (PCA) of Singular Spectrum Analysis (SSA). According to this study, correlation coefficient between storage level and SPI (3) was highly calculated with CC=0.78, and the monitoring and predictability of storage level was diagnosed using the drought index calculated from satellite data. As a result of analysis of principal component analysis by SSA, correlation between SPI (3) and each Reconstructed Components (RCs) data were highly correlated with CC=0.87 to 0.99. And also, the correlations of RC data with Normalized Water Surface Level (N-W.S.L.) were confirmed that has highly correlated with CC=0.83 to 0.97. In terms of high resolution satellite image we developed a water detection algorithm by applying an exponential method to monitor the change of storage level by using Multi-Spectral Instrument (MSI) sensor of Sentinel-2 satellite. The materials of satellite image for water surface area detection in Yongdam dam watershed was considered from 2016 to 2018, respectively. Based on this, we proposed the possibility of real-time drought monitoring system using high resolution water surface area detection by Sentinel-2 satellite image. The results of this study can be applied to estimate of the reservoir volume calculated from various satellite observations, which can be used for monitoring and estimating hydrological droughts in an unmeasured area.

Elevational Distribution of Breeding Bird Communities in Seoraksan National Park, Korea

  • Hwang, Hyun-Su;Lee, Jae-Kang;Eom, Tae-Kyung;Bae, Ho-Kyoung;Lee, Dong-Ho;Lim, Jong-Hwan;Jung, Sung-Cheol;Park, Chan-Ryul;Rhim, Shin-Jae
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.1
    • /
    • pp.109-114
    • /
    • 2020
  • In this study, the elevational distribution of breeding birds in Seoraksan National Park, Korea was investigated. Forty-six species of birds were documented from line transect surveys taken from Seorakdong at 230 m above sea level (a.s.l.) to the Daechungbong summit at 1708 m asl. Birdspecies richness and diversity were highest in Seorakdong and lowest at the Daechungbong summit. As elevation increased, bird species richness and diversity decreased, with a humped-shape trend being observed between 700 m and 1200 m a.s.l. Stepwise analyses revealed that breeding bird species diversity indices were significantly negatively correlated with elevation (r2 = 0.327, P < 0.001) and positively correlated with vegetational coverage (r2 = 0.324, P = 0.046). Higher elevations supported fewer birds than low and intermediate elevations. Projections at the local scale, including data on behavior and habitat use by birds, will be necessary for optimal conservation and management of the bird communities in Seoraksan National Park.

Evaluation of Drought Risk in Gyeongsang-do Using EDI (EDI를 활용한 경상도 지역의 가뭄위험도 평가)

  • Park, Jong Yong;Yoo, Ji Young;Choi, Minha;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.243-252
    • /
    • 2011
  • The change of rainfall pattern due to recent climate change increases the occurrence probability of drought in Korea. Unlike other natural disasters, a drought has long duration, extensive area subject to damage, and greater socioeconomic damage than other disasters. In order to evaluate drought severity, meteorological drought indices are mainly used in practice. This study presents a more realistic method to evaluate drought severity considering drought climate factors as well as socioeconomic factors which are vulnerable to disaster. To perform a spatial evaluation of drought risk in Gyeongsang-do, drought risk was defined and analyzed through the hazard index and the vulnerability index. The drought hazard index was spatially assessed using the drought index and GIS. The drought vulnerability index was also spatially assessed using the 5 socioeconomic factors. As a result, the drought risks were compared and used for evaluating regional drought risk considering regional characteristics of Gyeongsang-do.

An Analysis of the International Competitiveness in the Non-Timber Forest Products in Korea (국내 단기소득임산물의 국제경쟁력 분석)

  • Jung, Byung Heon;Lee, Seong Youn
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.726-732
    • /
    • 2009
  • In order to compare and analyze the international competitiveness of Non-Timber Forest Products, the analyses of Revealed Comparative Advantage, Market Comparative Advantage, and Constant Market Share were performed in this study. From the result of data analysis from 2002 to 2006, most of items lost the international competitiveness. In the case of chestnut, however, the RCA and MCA indices recently has decreased, but still shows the competitiveness. As a Non-Timber Forest Products show a weak international competitiveness, Import is expected to increased according to the pending FTA and DDA negotiations of Korea/China. Therefore, In order to elevate the international competitiveness, reinforcement of policy support to durable technical development is required to lower the production cost and to heighten the added value.

Study of the Relationship between the East Asian Marginal SST and the Two Different Types of El Niño (서로 다른 두 유형의 엘니뇨와 동아시아 인근 해역 표층 온도 상관성 연구)

  • Yoon, Jin-Hee;Yeh, Sang-Wook
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.51-61
    • /
    • 2009
  • In this study we define the two different types of El $Ni{\tilde{n}}o$, i.e., the eastern Pacific El $Ni{\tilde{n}}o$ (i.e., EP-El $Ni{\tilde{n}}o$) versus the central Pacific El $Ni{\tilde{n}}o$ (i.e., CP-El $Ni{\tilde{n}}o$), during the boreal summer (June-July-August, JJA) and winter (December-January-February, DJF) using the two NINO indices in the tropical Pacific. The two different types of El $Ni{\tilde{n}}o$ significantly differ in terms of the location of the maximum anomalous sea surface temperature (SST) in the tropical Pacific. The CP-El $Ni{\tilde{n}}o$ has been observed more frequently during recent decades compared to the EP-El $Ni{\tilde{n}}o$. In addition, our analysis indicates that the statistics of CP-El $Ni{\tilde{n}}o$ during JJA is closely associated with the warming trend in the central equatorial Pacific. We also examine the different responses of the East Asian marginal SST to the two types of El $Ni{\tilde{n}}o$ during JJA and DJF. The CP-El $Ni{\tilde{n}}o$ during both JJA and DJF is concurrent with warm SST anomalies around the Korean Peninsula including the East China Sea, which is in contrast to the EP-El $Ni{\tilde{n}}o$. Such different responses are associated with the difference in tropics/mid-latitude teleconnections via atmosphere between the two types of El $Ni{\tilde{n}}o$. Furthermore, our results indicate that atmospheric diabatic forcing in relation to the precipitation variability is different in the tropical Pacific between the EP-El $Ni{\tilde{n}}o$ and the CP-El $Ni{\tilde{n}}o$.

Correlation analysis between climate indices and Korean precipitation and temperature using empirical mode decomposition : I. Data decomposition and characteristic analysis (경험적 모드분해법을 이용한 기상인자와 우리나라 강수 및 기온의 상관관계 분석 : I. 자료의 분해 및 특성 분석)

  • Ahn, Si-Kweon;Choi, Wonyoung;Kim, Taereem;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.197-205
    • /
    • 2016
  • Recently, natural hazards have occurred frequently due to climate change. The research need for predicting variability and tendency of precipitation and temperature has been increased. However, it is difficult to determine the characteristics of precipitation and temperature within a confidence range since they change due to complex factors with choppy and too many components. If their characteristics having more than one component are decomposed, then it can be useful for determining the variation of such characteristics more accurately. In this study, Korean precipitation and temperature were decomposed and their Intrinsic Mode Function (IMF) were extracted from Empirical Mode Decomposition (EMD). Finally, the characteristics of Korean precipitation and temperature data were analyzed in terms of periodicity and tendency.