• Title/Summary/Keyword: Climate Change Risk Assessment

Search Result 146, Processing Time 0.028 seconds

Lake Vulnerability Assessment (호소의 취약성 평가)

  • Kim, Eung-Seok;Yoon, Ki-Yong;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6877-6883
    • /
    • 2014
  • The continuous social development has led to increasing pollution in lakes. This study proposed the LVRI (Lake Vulnerability Resilience Indicator) based on the vulnerability assessment of climate change for an environmental risk assessment in lakes sufferign water pollution in an integrated aspect of the characteristics in lake watersheds. A total of 11 representative assessment factors were selected and constructed for 6 lake basins in the Geum River Watershed to calculate the exposure, sensitivity and adaptation indicators in a vulnerability assessment classification system. The weight coefficients for assessment factors of the LVRI were also calculated using the Entropy method. This study also compared the rank results of the lake environmental risk with/without the weight coefficients of assessment factors for the practical application of the proposed lake environmental risk assessment method. The lake environmental risk results estimated in this study can be used for long-term water quality analysis and management in lakes.

Development of index for flood risk assessment on national scale and future outlook (전국 단위 홍수위험도 평가를 위한 지수 개발과 미래 전망)

  • Kim, Daeho;Kim, Young-Oh;Jee, Hee Won;Kang, Tae-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.5
    • /
    • pp.323-336
    • /
    • 2020
  • Owing to climate change, the annual precipitation in Korea has increased since the 20th century, and it is projected to continue increasing in the future. This trend of increasing precipitation will raise the possibility of floods; hence, it is necessary to establish national adaptation plans for floods, based on a reasonable flood risk assessment. Therefore, this study focuses on developing a framework that can assess the flood risk across the country, as well as computing the flood risk index (FRI). The framework, which is based on IPCC AR5, is established as a combination of three indicators: hazard, exposure, and capacity. A data-based approach was used, and the weights of each component were assigned to improve the validity of the FRI. A Spearman correlation analysis between the FRI and flood damage verified that the index was capable of assessing potential flood damage. When predicting scenarios for future assessment using the HadGEM3-RA based on RCP 4.5 and 8.5, the flood risk tends to be lower in the early and mid-21st century, and it becomes higher at the end of the 21st century as compared with the present.

A Study on the Earthquake Safety Assessment of Energy Storage Facilities According to Climate Change (기후변화에 따른 에너지 저장시설 지진 안전성평가에 관한 연구)

  • Ham, Eun-Gu;Lee, Sung-Il
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.226-235
    • /
    • 2021
  • Purpose: The risk assessment for earthquakes was conducted in accordance with the current design standard (KBC2016) for the Coalescer facility, which is a major facility of energy storage facilities. Method: The risk assessment for earthquakes was conducted in accordance with the current design standard (KBC2016) for the Coalescer facility, which is a major facility of energy storage facilities. Result: In this study, by statically loading earthquake loads and evaluating the level of collapse prevention of special-class structures, facility managers can easily recognize and evaluate the risk level, and this analysis result can be applied to future facility risk management. Earthquake analysis was performed so that. Conclusion: As a result of analyzing the Coalescer facility according to the current design standard KBC2016, the stress ratio of the main supporting members was found to be up to 4.7%. Therefore, the members supporting Coalescer were interpreted as being safe against earthquakes with a reproducibility period of 2400 years that may occur in Korea.

Assessment of the impact of climate variability on runoff change of middle-sized watersheds in Korea using Budyko hypothesis-based equation (Budyko 가설 기반 기후 탄력성을 고려한 기후변동이 우리나라 중권역 유출량 변화에 미치는 영향 평가)

  • Oh, Mi Ju;Hong, Dahee;Lim, Kyung Jin;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.237-248
    • /
    • 2024
  • Watershed runoff that is an important component of the hydrological processes has been significantly altered by climate variability and human activities in many watersheds around the world. It is important to investigate the impacts of climate variability and human activities on watershed runoff change for water resource management. In this study, using watershed runoff data for 109 middle-sized watersheds in Korea, the impacts of climate variability and human activities on watershed runoff change were quantitatively evaluated. Using the Pittitt test, the analysis period was divided into two sub-periods, and the impacts of climate variability and human activities on the watershed runoff change were quantified using the Budyko hypothesis-based climate elasticity method. The overall results indicated that the relative contribution of climate variability and human activities to the watershed runoff change varied by middle-sized watersheds, and the dominant factors on the watershed runoff change were identified for each watershed among climate variability and human activities. The results of this study enable us to predict the watershed runoff change considering climate variability and watershed development plans, which provides useful information for establishing a water resource management plan to reduce the risk of hydrological disasters such as drought or flood.

Impact Assessment of Sea_Level Rise based on Coastal Vulnerability Index (연안 취약성 지수를 활용한 해수면 상승 영향평가 방안 연구)

  • Lee, Haemi;Kang, Tae soon;Cho, Kwangwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.304-314
    • /
    • 2015
  • We have reviewed the current status of coastal vulnerability index(CVI) to be guided into an appropriate CVI development for Korean coast and applied a methodology into the east coast of Korea to quantify coastal vulnerability by future sea_level rise. The CVIs reviewed includes USGS CVI, sea_level rise CVI, compound CVI, and multi scale CVI. The USGS CVI, expressed into the external forcing of sea_level rise, wave and tide, and adaptive capacity of morphology, erosion and slope, is adopted here for CVI quantification. The range of CVI is 1.826~22.361 with a mean of 7.085 for present condition and increases into 2.887~30.619 with a mean of 12.361 for the year of 2100(1 m sea_level rise). The index "VERY HIGH" is currently 8.57% of the coast and occupies 35.56% in 2100. The pattern of CVI change by sea_level rise is different to different local areas, and Gangneung, Yangyang and Goseong show the highest increase. The land use pattern in the "VERY HIGH" index is dominated by both human system of housing complex, road, cropland, etc, and natural system of sand, wetland, forestry, etc., which suggests existing land utilization should be reframed in the era of climate change. Though CVI approach is highly efficient to deal with a large set of climate scenarios entailed in climate impact assessment due to uncertainties, we also propose three_level assessment for the application of CVI methodology in the site specific adaptation such as first screening assessment by CVI, second scoping assessment by impact model, and final risk quantification with the result of impact model.

User-specific Agrometeorological Service to Local Farming Community: A Case Study (농가맞춤형 기상서비스 시범사업)

  • Yun, Jin I.;Kim, Soo-Ock;Kim, Jin-Hee;Kim, Dae-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.320-331
    • /
    • 2013
  • The National Center for AgroMeteorology (NCAM) has designed a risk management solution for individual farms threatened by the climate change and variability. The new service produces weather risk indices tailored to the crop species and phenology by using site-specific weather forecasts and analysis derived from digital products of the Korea Meteorological Administration (KMA). If the risk is high enough to cause any damage to the crops, agrometeorological warnings or watches are delivered to the growers' cellular phones with relevant countermeasures to help protect their crops against the potential damage. Core techniques such as scaling down of weather data to individual farm level and the crop specific risk assessment for operational service were developed and integrated into a cloud based service system. The system was employed and implemented in a rural catchment of 50 $km^2$ with diverse agricultural activities and 230 volunteer farmers are participating in this project to get the user-specific weather information from and to feed their evaluations back to NCAM. The experience obtained through this project will be useful in planning and developing the nation-wide early warning service in agricultural sector exposed to the climate and weather extremes under climate change and climate variability.

Scheme on Environmental Risk Assessment and Management for Carbon Dioxide Sequestration in Sub-seabed Geological Structures in Korea (이산화탄소 해양 지중저장사업의 환경위해성평가관리 방안)

  • Choi, Tae-Seob;Lee, Jung-Suk;Lee, Kyu-Tae;Park, Young-Gyu;Hwang, Jin-Hwan;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.307-319
    • /
    • 2009
  • Carbon dioxide capture and storage (CCS) technology has been regarded as one of the most possible and practical option to reduce the emission of carbon dioxide ($CO_2$) and consequently to mitigate the climate change. Korean government also have started a 10-year R&D project on $CO_2$ storage in sea-bed geological structure including gas field and deep saline aquifer since 2005. Various relevant researches are carried out to cover the initial survey of suitable geological structure storage site, monitoring of the stored $CO_2$ behavior, basic design of $CO_2$ transport and storage process and the risk assessment and management related to $CO_2$ leakage from engineered and geological processes. Leakage of $CO_2$ to the marine environment can change the chemistry of seawater including the pH and carbonate composition and also influence adversely on the diverse living organisms in ecosystems. Recently, IMO (International Maritime Organization) have developed the risk assessment and management framework for the $CO_2$ sequestration in sub-seabed geological structures (CS-SSGS) and considered the sequestration as a waste management option to mitigate greenhouse gas emissions. This framework for CS-SSGS aims to provide generic guidance to the Contracting Parties to the London Convention and Protocol, in order to characterize the risks to the marine environment from CS-SSGS on a site-specific basis and also to collect the necessary information to develop a management strategy to address uncertainties and any residual risks. The environmental risk assessment (ERA) plan for $CO_2$ storage work should include site selection and characterization, exposure assessment with probable leak scenario, risk assessment from direct and in-direct impact to the living organisms and risk management strategy. Domestic trial of the $CO_2$ capture and sequestration in to the marine geologic formation also should be accomplished through risk management with specified ERA approaches based on the IMO framework. The risk assessment procedure for $CO_2$ marine storage should contain the following components; 1) prediction of leakage probabilities with the reliable leakage scenarios from both engineered and geological part, 2) understanding on physio-chemical fate of $CO_2$ in marine environment especially for the candidate sites, 3) exposure assessment methods for various receptors in marine environments, 4) database production on the toxic effect of $CO_2$ to the ecologically and economically important species, and finally 5) development of surveillance procedures on the environmental changes with adequate monitoring techniques.

  • PDF

Impacts to the Micronesian islands by environmental change of globalization and climate change

  • Nagashima, Shunsuke
    • Journal of Ecology and Environment
    • /
    • v.33 no.2
    • /
    • pp.79-94
    • /
    • 2010
  • This article focused on the environmental changes on atolls in Micronesia. First, we considered the problem. Second, we designed research that focused on the impacts of environmental changes especially in relation to globalization and global warming in the Federated States of Micronesia (FSM). The results were in accordance to the hypotheses that globalization had impacted prominently in communities on main islands and impact was lessened with increased distance from the centre. The fact that the islands are remotely situated and thus, in theory, do not have much outside influence, has not alleviated them from having societal concerns. The earth's environmental change is causing an impact on the main islands as well. This has been governed by distinctive characteristics in their geographical, regional, and contents. Moreover, they showed stronger concerns about impacts on the environment than globalization. A set of questionnaires was used as the principal assessment method to quantify the concerns relating to the environmental changes.

International Case Study and Strategy Proposal for IUCN Red List of Ecosystem(RLE) Assessment in South Korea (국내 IUCN Red List of Ecosystem(생태계 적색목록) 평가를 위한 국제 사례 연구와 전략 제시)

  • Sang-Hak Han;Sung-Ryong Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.408-416
    • /
    • 2023
  • The IUCN Red List of Ecosystems serves as a global standard for assessing and identifying ecosystems at high risk of biodiversity loss, providing scientific evidence necessary for effective ecosystem management and conservation policy formulation. The IUCN Red List of Ecosystems has been designated as a key indicator (A.1) for Goal A of the Kunming-Montreal Global Biodiversity Framework. The assessment of the Red List of Ecosystems discerns signs of ecosystem collapse through specific criteria: reduction in distribution (Criterion A), restricted distribution (Criterion B), environmental degradation (Criterion C), changes in biological interaction (Criterion D), and quantitative estimation of the risk of ecosystem collapse (Criterion E). Since 2014, the IUCN Red List of Ecosystems has been evaluated in over 110 countries, with more than 80% of the assessments conducted in terrestrial and inland water ecosystems, among which tropical and subtropical forests are distributed ecosystems under threat. The assessment criteria are concentrated on spatial signs (Criteria A and B), accounting for 68.8%. There are three main considerations for applying the Red List of Ecosystems assessment domestically: First, it is necessary to compile applicable terrestrial ecosystem types within the country. Second, it must be determined whether the spatial sign assessment among the Red List of Ecosystems categories can be applied to the various small-scale ecosystems found domestically. Lastly, the collection of usable time series data (50 years) for assessment must be considered. Based on these considerations, applying the IUCN Red List of Ecosystems assessment domestically would enable an accurate understanding of the current state of the country's unique ecosystem types, contributing to global efforts in ecosystem conservation and restoration.