• Title/Summary/Keyword: Climate Change Impact Assessment

Search Result 394, Processing Time 0.027 seconds

Assessment of ECMWF's seasonal weather forecasting skill and Its applicability across South Korean catchments (ECMWF 계절 기상 전망 기술의 정확성 및 국내 유역단위 적용성 평가)

  • Lee, Yong Shin;Kang, Shin Uk
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.529-541
    • /
    • 2023
  • Due to the growing concern over forecasting extreme weather events such as droughts caused by climate change, there has been a rising interest in seasonal meteorological forecasts that offer ensemble predictions for the upcoming seven months. Nonetheless, limited research has been conducted in South Korea, particularly in assessing their effectiveness at the catchment-scale. In this study, we assessed the accuracy of ECMWF's seasonal forecasts (including precipitation, temperature, and evapotranspiration) for the period of 2011 to 2020. We focused on 12 multi-purpose reservoir catchments and compared the forecasts to climatology data. Continuous Ranked Probability Skill Score method is adopted to assess the forecast skill, and the linear scaling method was applied to evaluate its impact. The results showed that while the seasonal meteorological forecasts have similar skill to climatology for one month ahead, the skill decreased significantly as the forecast lead time increased. Compared to the climatology, better results were obtained in the Wet season than the Dry season. In particular, during the Wet seasons of the dry years (2015, 2017), the seasonal meteorological forecasts showed the highest skill for all lead times.

Adaption of Phenological Eventsin Seoul Metropolitan and Suburbsto Climate Change (기후변화에 따른 수도권 생물계절 반응 변화에 관한 연구)

  • Hyomin Park;Minkyung Kim;Sangdon Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • The rapid advance of technology has accelerated global warming. As 50.4 percent of South Korea's population is concentrated in the Seoul Metropolitan Area, which has become a considerable emitter of greenhouse gases, the city's average temperature is expected to increase more rapidly than in other areas in the country. A rise in the average temperature would affect everyday life and urban ecology; thus, appropriate measures to cope with the forthcoming disaster are in need. This study analyzed the changes in plant phenological phases from the past to the present based on temperatures (average temperature of Feb, Mar, April) observed in seven different weather stations nearthe Seoul Metropolitan Area (Ganghwa, Seoul, Suwon, Yangpyeong, Icheon, Incheon, and Paju) and the first flowering dates of Plum tree (Prunus mume), Korean forsythia (Forsythia koreana), Korean rosebay (Rhododendron mucronulatum), Cherry tree (Prunus serrulate), Peach tree (Prunus persica), and Pear tree (Pyrus serotina). Then, RCP (Representative Concentration Pathways) 2.6 and 8.5 scenarios were used to predict the future temperature in the Seoul Metropolitan Area and how it will affect plant phenological phases. Furthermore, the study examined the differences in the flowering dates depending on various strategies to mitigate greenhouse gases. The result showed that the rate of plant phenological change had been accelerated since the 1900s.If emission levels remain unchanged, plants will flower from 18 to 29 earlier than they do now in the Seoul Metropolitan Area, which would be faster than in other areas in the country. This is because the FFD (First Flowering Date), is highly related to temperature changes. The Seoul Metropolitan Area, which has been urbanized more rapidly than any other areas, is predicted to become a temperature warming, forcing the FFDs of the area to occur faster than in the rest of the country. Changes in phenology can lead to ecosystem disruption by causing mismatches in species interacting with each otherin an ecosystem. Therefore, it is necessary to establish strategies against temperature warming and FFD change due to urbanization.

Assessment of Greenhouse gases Emission of Agronomic Sector between 1996 and 2006 IPCC Guidelines (1996년과 2006년 IPCC 가이드라인별 경종부문 온실가스 배출량 평가)

  • Jeong, Hyun-Cheol;Kim, Gun-Yeob;Lee, Deog-Bae;Shim, Kyo-Moon;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1214-1219
    • /
    • 2011
  • This study was conducted to compare of greenhouse gas emissions between 1996 and 2006 IPCC (Intergovernmental Panel on Climate Change) guidelines change. Greenhouse gas emissions were calculated separately by rice cultivation, agricultural soils and field burning of agricultural residues from 2000 to 2008 according to 1996 and 2006 IPCC guidelines. To calculate greenhouse gas emissions, emission factor and activity data were used IPCC default value and the food, agricultural, forestry and fisheries statistical yearbook of MIFAFF (Ministry for Food, Agriculture, Forestry, and Fisheries). The greenhouse emissions by 1996 IPCC guidelines were highest in rice cultivation as 4,008 $CO_2$-eq Gg of 2000 and 3,558 $CO_2$-eq Gg of 2008. The emissions by N-fixing crops, crop residues returned soils and field burning did not much affect the total emissions. $CO_2$ emissions by urea and lime were calculated by adding in 2006 IPCC guidelines and its emissions were 157 and 82 $CO_2$-eq Gg in 2008 respectively. The emissions by N-fixing crops, crop residues returned to soils and field burning, in common with 1996 IPCC guidelines, did not have a significant impact on total emissions. The total emissions in agronomic sector was decreased continuously from 2000 to 2008 and annual emissions by 2006 IPCC guidelines were approximately 26-29% less than the 1996 IPCC guidelines.

The Evaluation of Carbon Storage and Economic Value Assessment of Wetlands in the City of Seoul (서울시 습지지역의 탄소저장 및 경제적 가치 평가에 대한 연구)

  • Choi, Jiyoung;Oh Jongmin;Lee, Sangdon
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.2
    • /
    • pp.120-132
    • /
    • 2021
  • The ecosystem and landscape conservation areas of Seoul were designated according to the Natural Environment Conservation Act and the Natural Environment Conservation Ordinance. With the adoption of the "Rapid Assessment of Wetland Ecosystem Service (RAWES)" approach and the "wetland ecosystem service" for the Ramsar Wetland City Accreditation at the 13th Meeting of the Conference of the Contracting Parties to the Ramsar Convention on Wetlands in 2018, the need for data evaluating wetland ecosystem services has become a necessity. Therefore, in this study, we selected five wetlands from the ecosystem and landscape conservation areas in Seoul, having high ecological conservation values, and evaluated their carbon sequestration and economic value assessment using the InVEST model, which is an ecosystem service evaluation technique. The evaluation results for carbon storage in each wetland are as follows: Tancheon Wetland: 3,674.62 Mg; Bamseom Island in the Hangang River: 1,511.57 Mg; Godeok-dong Wetland: 5,007.21 Mg; Amsa-dong Wetland: 7,108.47 Mg; and Yeouido Wetland: 290.27 Mg. Particularly, the Tancheon Wetland showed the lowest carbon sequestration of 1,130.37 Mg, as compared to the results acquired in 2013, of 4,804.99 Mg. When the average effective carbon rate of $16.06 (US) was applied to the decreased carbon sequestration value, a loss of $15,910.58(US) was calculated. Furthermore, if the average social cost of carbon ($204 (US)) is considered, which includes the impact of climate change on productivity and ecosystems, the total loss is equivalent to $202,101.97 (US). This study aims to examine the natural resource value of urban wetlands by evaluating selected major wetlands in Seoul. This study can be utilized as basic data to plan for the protection and management of the ecosystem and landscape conservation areas. Additionally, because wetland value assessment is considered essential, the results of this study can be used in future research to provide measures for evaluating ecosystem services in the Ramsar Wetland City Certification System. Moreover, this study can be utilized for selecting important wetlands as Ramsar sites, and to raise awareness about the significance of conserving urban wetlands, and for expanding international exchange among the Ramsar Wetland sites.

Development of a deep neural network model to estimate solar radiation using temperature and precipitation (온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발)

  • Kang, DaeGyoon;Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.85-96
    • /
    • 2019
  • Solar radiation is an important variable for estimation of energy balance and water cycle in natural and agricultural ecosystems. A deep neural network (DNN) model has been developed in order to estimate the daily global solar radiation. Temperature and precipitation, which would have wider availability from weather stations than other variables such as sunshine duration, were used as inputs to the DNN model. Five-fold cross-validation was applied to train and test the DNN models. Meteorological data at 15 weather stations were collected for a long term period, e.g., > 30 years in Korea. The DNN model obtained from the cross-validation had relatively small value of RMSE ($3.75MJ\;m^{-2}\;d^{-1}$) for estimates of the daily solar radiation at the weather station in Suwon. The DNN model explained about 68% of variation in observed solar radiation at the Suwon weather station. It was found that the measurements of solar radiation in 1985 and 1998 were considerably low for a small period of time compared with sunshine duration. This suggested that assessment of the quality for the observation data for solar radiation would be needed in further studies. When data for those years were excluded from the data analysis, the DNN model had slightly greater degree of agreement statistics. For example, the values of $R^2$ and RMSE were 0.72 and $3.55MJ\;m^{-2}\;d^{-1}$, respectively. Our results indicate that a DNN would be useful for the development a solar radiation estimation model using temperature and precipitation, which are usually available for downscaled scenario data for future climate conditions. Thus, such a DNN model would be useful for the impact assessment of climate change on crop production where solar radiation is used as a required input variable to a crop model.

Reproductive Performance of Holstein Dairy Cows Grazing in Dry-summer Subtropical Climatic Conditions: Effect of Heat Stress and Heat Shock on Meiotic Competence and In vitro Fertilization

  • Pavani, Krishna;Carvalhais, Isabel;Faheem, Marwa;Chaveiro, Antonio;Reis, Francisco Vieira;da Silva, Fernando Moreira
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.3
    • /
    • pp.334-342
    • /
    • 2015
  • The present study was designed to evaluate how environmental factors in a dry-summer subtropical climate in Terceira-Azores (situated in the North Atlantic Ocean: $38^{\circ}43^{\prime}N27^{\circ}12^{\prime}W$) can affect dairy cow (Holstein) fertility, as well as seasonal influence on in vitro oocytes maturation and embryos development. Impact of heat shock (HS) effects on in vitro oocyte's maturation and further embryo development after in vitro fertilization (IVF) was also evaluated. For such purpose the result of the first artificial insemination (AI) performed 60 to 90 days after calving of 6,300 cows were recorded for one year. In parallel, climatic data was obtained at different elevation points (n = 5) from 0 to 1,000 m and grazing points from 0 to 500 m, in Terceira island, and the temperature humidity index (THI) was calculated. For in vitro experiments, oocytes (n = 706) were collected weekly during all year, for meiotic maturation and IVF. Further, to evaluate HS effect, 891 oocytes were collected in the cold moths (December, January, February and March) and divided in three groups treated to HS for 24 h during in vitro maturation at: C (Control = $38.5^{\circ}C$), HS1 ($39.5^{\circ}C$) and HS2 ($40.5^{\circ}C$). Oocytes from each group were used for meiotic assessment and IVF. Cleavage, morula and blastocyst development were evaluated respectively on day 2, 6, and 9 after IVF. A negative correlation between cow's conception rate (CR) and THI in grazing points (-91.3%; p<0.001) was observed. Mean THI in warmer months (June, July, August and September) was $71.7{\pm}0.7$ and the CR ($40.2{\pm}1.5%$) while in cold months THI was $62.8{\pm}0.2$ and CR was $63.8{\pm}0.4%$. A similar impact was obtained with in vitro results in which nuclear maturation rate (NMR) ranged from 78.4% (${\pm}8.0$) to 44.3% (${\pm}8.1$), while embryos development ranged from 53.8% (${\pm}5.8$) to 36.3% (${\pm}3.3$) in cold and warmer months respectively. In vitro HS results showed a significant decline (p<0.05) on NMR of oocytes for every $1^{\circ}C$ rising temperature ($78.4{\pm}8.0$, $21.7{\pm}3.1$ and $8.9{\pm}2.2$, respectively for C, HS1, and HS2). Similar results were observed in cleavage rate and embryo development, showing a clear correlation (96.9 p<0.05) between NMR and embryo development with respect to temperatures. Results clearly demonstrated that, up to a THI of 70.6, a decrease in the CR occurs in first AI after calving; this impairment was confirmed with in vitro results.

A Sub-grid Scale Estimation of Solar Irradiance in North Korea (북한지역 상세격자 디지털 일사량 분포도 제작)

  • Choi, Mi-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • Reliable information on the surface solar radiation is indispensable for rebuilding food production system in the famine plagued North Korea. However, transfer of the related modeling technology of South Korea is not possible simply because raw data such as solar radiation or sunshine duration are not available. The objective of this study is restoring solar radiation data at 27 synoptic stations in North Korea by using satellite remote sensing data. We derived relationships between MODIS radiation estimates and the observed solar radiation at 18 locations in South Korea. The relationships were used to adjust the MODIS based radiation data and to restore solar radiation data at those pixels corresponding to the 27 North Korean synoptic stations. Inverse distance weighted averaging of the restored solar radiation data resulted in gridded surfaces of monthly solar radiation for 4 decadal periods (1983-1990, 1991-2000 and 2001-2010), respectively. For a direct application of these products, we produced solar irradiance estimates for each sub-grid cell with a 30 m spacing based on a sun-slope geometry. These products are expected to assist planning of the North Korean agriculture and, if combined with the already prepared South Korean data, can be used for climate change impact assessment across the whole Peninsula.

Preliminary Report of Observed Urban - Rural Gradient of Carbon Dioxide Concentration across Seoul, Suwon, and Icheon in South Korea (도시 - 전원간 이산화탄소(CO2) 농도구배 예비관측 결과)

  • Chung, U-Ran;Lee, Kyu-Jong;Lee, Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.268-276
    • /
    • 2007
  • Urban atmosphere may play as a harbinger for the future climate change with respect to temperature and $CO_2$ concentration. The Seoul metropolitan area is unique in rapid urbanization and industrialization during the last several decades, providing a natural $CO_2$ dome with increased temperature. This study was carried out to evaluate the feasibility of using the urban-rural environmental gradient in replacement of the IPCC mid-term scenario (after 30-50 years). For this, we measured atmospheric $CO_2$ concentration and air temperature at three sites with different degree of urbanization (Seoul, Suwon, and Icheon). Results from 11-month measurement can be summarized as follows: (1) The annual mean $CO_2$ concentration across 3 sites was in the order of Seoul (439 ppm) > Suwon (419 ppm) > Icheon (416 ppm), showing a substantial urban-rural environmental gradient. (2) The diurnal fluctuation in $CO_2$ concentration was greater in summer than in winter, showing the effect of photosynthesis on local $CO_2$ concentration. (3) The daily maximum $CO_2$ concentration was observed at 0500 LST in spring and summer, 0800 LST in autumn, and 0900 LST in winter, showing the sunrise-time dependence. (4) The observed hourly maximum $CO_2$ concentration averaged for the whole period was 446 ppm in Seoul at 0700 LST, while the minimum was 407 ppm in Suwon at 1500 LST. (5) Compared with the background atmospheric concentration of $CO_2$ in Anmyeon-do (377.4 ppm annual mean), $CO_2$ concentration of the study sites was higher by 14% in Seoul, by 10% in Suwon, and by 9% in Icheon. The observed $CO_2$ concentration in Seoul reached already 98% of the 2030-2040 projection (450 ppm) and 80% of the 2040-2050 projection (550 ppm) under the IPCC BAU scenario, showing a feasibility of using the $CO_2$ dome of Seoul as a natural experimental setting for the mid-term climate change impact assessment.

History and Future Direction for the Development of Rice Growth Models in Korea (벼 작물생육모형 국내 도입 활용과 앞으로의 연구 방향)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Baek, Jaekyeong;Cho, Chongil;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.167-174
    • /
    • 2019
  • A process-oriented crop growth model can simulate the biophysical process of rice under diverse environmental and management conditions, which would make it more versatile than an empirical crop model. In the present study, we examined chronology and background of the development of the rice growth models in Korea, which would provide insights on the needs for improvement of the models. The rice crop growth models were introduced in Korea in the late 80s. Until 2000s, these crop models have been used to simulate the yield in a specific area in Korea. Since then, improvement of crop growth models has been made to take into account biological characteristics of rice growth and development in more detail. Still, the use of the crop growth models has been limited to the assessment of climate change impact on crop production. Efforts have been made to apply the crop growth model, e.g., the CERES-Rice model, to develop decision support system for crop management at a farm level. However, the decision support system based on a crop growth model was attractive to a small number of stakeholders most likely due to scarcity of on-site weather data and reliable parameter sets for cultivars grown in Korea. The wide use of the crop growth models would be facilitated by approaches to extend spatial availability of reliable weather data, which could be either measured on-site or estimates using spatial interpolation. New approaches for calibration of cultivar parameters for new cultivars would also help lower hurdles to crop growth models.

Change of Carbon Fixation and Economic Assessment according to the Implementation of the Sunset Provision (도시공원 일몰제에 의한 탄소고정량과 경제성 분석에 대한 연구)

  • Choi, Jiyoung;Lee, Sangdon
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.126-133
    • /
    • 2020
  • In accordance with the implementation of the sunset provision to cancel the designations of urban park sites that remained unexecuted for a prolonged period until 2020, the park sites in the city center, which account for 90% of the long-term unexecuted urban facilities subjected to the provision, are currently on the verge of development. The total area of the 204 park sites that will disappear in Seoul as a result of this provision is 95 ㎢; moreover, 116 of these are privately-owned. It is expected that the possible changes in the use of these park sites could result in reckless development and reduction of green space, which would ultimately affect the ecosystem. This study applied the InVEST model to calculate the changes in the fixed carbon amount before and after the implementation of the sunset provision to estimate the economic value of these changes. The study focused on Jongno-gu in Seoul because it has the most unexecuted park sites subjected to the lifting of the designation. The research findings show that the fixed carbon amount provided by the unexecuted park sites in Jongno-gu was 374,448 mg, prior to the implementation of the sunset provision; however, the amount was estimated to decrease by 18% to 305,564 mg after its execution. When calculated in terms of average value of the real carbon price, this translated into a loss of approximately 700 million won. In addition, considering the social costs including both climate change and the impact on the ecosystem, an economic loss of approximately 98 billion won was projected. This study is meaningful because its predictions are based on the estimation of fixed carbon amount according to the implementation of the sunset provision in Jongno-gu and scientifically calculates the value of ecological services provided by the parks in the city. This study can serve not only as a basis during the decision-making process for policies related to ecosystem conservation and development, but also as an evidentiary material for the compensation of privately-owned land that is designated as urban park sites and was unexecuted for a prolonged period.