• Title/Summary/Keyword: Climate Change Impact

Search Result 1,040, Processing Time 0.029 seconds

Effect of Regional Climate Change Projected by RCP Scenarios on the Efficiency of Low Impact Development Applications (RCP 시나리오에 따른 지역의 기후변화가 저영향개발 기법 효과에 미치는 영향)

  • Jeon, Ji-Hong;Kim, Tae-Dong;Choi, Donghyuk
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.409-417
    • /
    • 2018
  • This study elicited the necessity of considering regional climate change on Low Impact Development (LID) application by evaluating its effect on LID efficiency. The relationship between climate change factors and LID efficiency was evaluated with Representative Concentration Pathway (RCP) showing the increase of annual precipitation and representative evapotranspiration. Simply lowering lawn surface (LID3), a practical option to increase retention and infiltration effect, demonstrated hydrological improvement above two conventional options, bioretention with green roof (LID1) and bioretention only (LID2). High runoff reductions of applied options at RCP 4.5, supposing taking efforts for mitigating green house gases, revealed that climate change countermeasures were preferable to LID efficiencies. The increase of precipitation had more influence in hydrological change than that of reference evapotranspiration.

Future Climate Change Impact Assessment of Chungju Dam Inflow Considering Selection of GCMs and Downscaling Technique (GCM 및 상세화 기법 선정을 고려한 충주댐 유입량 기후변화 영향 평가)

  • Kim, Chul Gyum;Park, Jihoon;Cho, Jaepil
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • In this study, we evaluated the uncertainty in the process of selecting GCM and downscaling method for assessing the impact of climate change, and influence of user-centered climate change information on reproducibility of Chungju Dam inflow was analyzed. First, we selected the top 16 GCMs through the evaluation of spatio-temporal reproducibility of 29 raw GCMs using 30-year average of 10-day precipitation without any bias-correction. The climate extreme indices including annual total precipitation and annual maximum 1-day precipitation were selected as the relevant indices to the dam inflow. The Simple Quantile Mapping (SQM) downscaling method was selected through the evaluation of reproducibility of selected indices and spatial correlation among weather stations. SWAT simulation results for the past 30 years period by considering limitations in weather input showed the satisfactory results with monthly model efficiency of 0.92. The error in average dam inflow according to selection of GCMs and downscaling method showed the bests result when 16 GCMs selected raw GCM analysi were used. It was found that selection of downscaling method rather than selection of GCM is more is important in overall uncertainties. The average inflow for the future period increased in all RCP scenarios as time goes on from near-future to far-future periods. Also, it was predicted that the inflow volume will be higher in the RCP 8.5 scenario than in the RCP 4.5 scenario in all future periods. Maximum daily inflow, which is important for flood control, showed a high changing rate more than twice as much as the average inflow amount. It is also important to understand the seasonal fluctuation of the inflow for the dam management purpose. Both average inflow and maximum inflow showed a tendency to increase mainly in July and August during near-future period while average and maximum inflows increased through the whole period of months in both mid-future and far-future periods.

Risk Assessment and Clasification for Climate Change Adaptation: Application on the Method of Climate Change Risk Assessment in the UK (기후변화 적응을 위한 리스크 평가 및 유형화: 영국의 정성적 리스크 평가 방법론 적용)

  • Kim, Dong Hyun
    • Journal of Environmental Policy
    • /
    • v.14 no.1
    • /
    • pp.53-83
    • /
    • 2015
  • Recently, climate change risk assessment has been discussed as a medium process for making climate change adaptation policies in the research field of climate change adaptation. Climate change risk assessment has been understood to have an intermediary role among impact assessment, vulnerable assessment and policy, and is used in the process of devising adaptation policies in the United Kingdom (UK). This paper quantitatively assessed the risks of climate change in Korea, applied the methods used in the UK, underwent the classification process and suggested implications of Korean adaptation policies. A survey of experts, based on Delphi's method and the classification criterion developed by Klinke and Renn(2002), was also carried out. A list of climate risks was created from the climate change impact and vulnerability assessment report of Korea, first national adaptation policy of Korea, and general climate risks of the UK. From the results, 42 risks out of total 125 risks were selected based on their importance. The assessed risks with factors, such as high impact and urgency, are related to repeated and large scale damage from storms and floods caused by abnormal or extreme weather events. Ecological changes and social infrastructure risks were engaged as required as a policy response for medium to longer term. As for making the classification, types of climate risks were suggested to manage the basic capacity in relation to social trust, triggering mechanism and responsibility. Following suggestions are put forward as the base of autonomous adaptation: increasing the capacity of civil society, mutual trust and civil participation in adaptation policy process.

  • PDF

The Impact of Climate Change on Fire

  • Eun-Hee JEON;Eun-Gu, HAM
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.4
    • /
    • pp.15-20
    • /
    • 2024
  • Purpose: Climate change is greatly affecting the frequency and intensity of fires around the world. The main effects of climate change on fires are rising temperatures, dry seasons and extreme droughts, changes in precipitation, increased strong winds, extended fire danger periods, and changes in natural ecosystems. Several factors due to climate change are increasing the risk of large-scale fires, such as wildfires. Research design, data and methodology: Rising temperatures caused by climate change will make forests and grasslands drier, make it easier for wildfires to occur in drier environments and spread quickly to wider areas, and the generated wildfires will release large amounts of greenhouse gases into the atmosphere, such as carbon dioxide (CO2), and the released greenhouse gases will strengthen the global greenhouse effect, further raising the temperature. As temperatures rise, the risk of wildfires increases in drier environments, and this process is repeated, leading to a vicious cycle of intensifying climate change as more fires occur and more greenhouse gases are released. Results: In conclusion, climate change is increasing the risk of fire occurrence and this phenomenon is expected to become more frequent and severe in the future. Conclusions: In order to cope with the increasing fire risk caused by climate change, fire prevention and management. Fire detection and response systems need to be strengthened, supportive policies and international cooperation are needed to restore ecosystems, and these measures, along with fire prevention, management and countermeasures, should take into account long-term climate change and adaptation as well as short-term responses.

Analysis of Climate Characteristics Observed over the Korean Peninsula for the Estimation of Climate Change Vulnerability Index (기후변화 취약성 지수 산출을 위한 한반도 관측 기후 특성 분석)

  • Nam, Ki-Pyo;Kang, Jeong-Eon;Kim, Cheol-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.891-905
    • /
    • 2011
  • Climate vulnerability index is usually defined as a function of the climate exposure, sensitivity, and adaptive capacity, which requires adequate selection of proxy variables of each variable. We selected and used 9 proxy variables related to climate exposure in the literature, and diagnosed the adequacy of them for application in Korean peninsula. The selected proxy variables are: four variables from temperature, three from precipitation, one from wind speed, and one from relative humidity. We collected climate data over both previous year (1981~2010) and future climate scenario (A1B scenario of IPCC SERES) for 2020, 2050, and 2100. We introduced the spatial and temporal diagnostic statistical parameters, and evaluated both spatial and time variabilities in the relative scale. Of 9 proxy variables, effective humidity indicated the most sensitive to climate change temporally with the biggest spatial variability, implying a good proxy variable in diagnostics of climate change vulnerability in Korea. The second most sensitive variable is the frequency of strong wind speed with a decreasing trend, suggesting that it should be used carefully or may not be of broad utility as a proxy variable in Korea. The A1B scenario of future climate in 2020, 2050 and 2100 matches well with the extension of linear trend of observed variables during 1981~2010, indicating that, except for strong wind speed, the selected proxy variables can be effectively used in calculating the vulnerability index for both past and future climate over Korea. Other local variabilities for the past and future climate in association with climate exposure variables are also discussed here.

Climate Change and Individual Life History (기후변화와 개체의 생활사)

  • Lee, Who-Seung
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.275-286
    • /
    • 2012
  • Over the last 20 years there have been more than 3000 peer-reviewed papers relating to climate change and biodiversity published, and still the numbers are increasing. However, most studies focused on the impacts of climate change at population or community levels, and the results invariably reveal that there has been, or will be, a negative effect on the structure and pattern of biodiversity. Moreover, the climate change models and statistical analyses used to test the impacts are only newly developed, and the analyses or predictions can often be misled. In this review, I ask why an individual's life history is considered in the study how climate change affects biodiversity, and what ecological factors are impacted by climate change. Using evidence from a range of species, I demonstrate that diverse life history traits, such as early growth rate, migration/foraging behaviour and lifespan, can be shifted by climate change at individual level. Particularly I discuss that the optimal decision under unknown circumstance (climate change) would be the reduction of the ecological fitness at individual level, and hence, a shift in the balance of the ecosystem could be affected without having a critical impact on any one species. To conclude, I summarize the links between climate changes, ecological decision in life history, the revised consequence at individual level, and discuss how the finely-balanced relationship affects biodiversity and population structure.

Development and Application of Climate Change Education Program in Middle School Science (중학교 과학과 기후변화 교육 프로그램 개발과 적용)

  • Woo, Jung-Ae;Nam, Young-Sook
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.5
    • /
    • pp.938-953
    • /
    • 2012
  • The purpose of the study was to develop a middle school science climate change education program, apply the program, and analyze the effects of the program. The climate change education program improves understanding of climate change and ability to take action about climate change. The results of this study are as follows: First, middle school science climate change education program was developed to cover eight topics. The middle school climate change education program contained the phenomenon of climate change, the cause of climate change, the impact of climate change, and a climate change measurement system. These contents were developed to reflect the global science education system and sustainable development education. Secondly, the results of the program's application showed that middle school climate change education program improved the knowledge and understanding levels of students, awareness, attitude towards, and the will of students to act in accordance to climate change.

Assessment of Environmental Flow Impacts for the Gosam Reservoir According to Climate Change (기후변화에 따른 고삼저수지의 환경유량 영향평가)

  • Yoon, Tae Hyung;Kang, Ho Young;Kim, Jong Suk;Moon, Young Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.93-100
    • /
    • 2016
  • This study conducted a quantitative assessment on the environmental flows associated with climate change in the Gosam Reservoir, Korea. The application of RCP 8.5 climate change scenario has found that the peak value of High Flow Pulses has increased by 36.0 % on average compared to historical data (2001 ~ 2010), which is likely to cause disadvantage on flood control and management but the increase in peak value is expected to make a positive impact on resolving the issue of green algal blooms, promoting vegetation in surrounding areas and encouraging spawning and providing habitats for native species by releasing a larger amount of landslides as well as organic matters than the past. However, the decreasing pattern of the peak value of High Flow Pulses is quite apparent with the trend of delay on the occurrence time of peak value, necessitating a long-term impact analysis. The peak value of Large Floods shows a clear sign of decrease against climate change scenario, which is expected to lead to changes in fish species caused by degraded quality of water and decreasing habitats. A quicker occurrence of Small Floods is also expected to make an impact on the growth cycle of aquatic plants, and the reduction in occurrence frequency of Extreme Low Flows is to contribute to increasing the population of and raising the survival rate of native fish, greatly improving the aquatic ecosystem. The results of this study are expected to be useful to establish the water environment and ecological system in adapting or responding to climate change.

An Integrated Modeling Approach for Predicting Potential Epidemics of Bacterial Blossom Blight in Kiwifruit under Climate Change

  • Kim, Kwang-Hyung;Koh, Young Jin
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.459-472
    • /
    • 2019
  • The increasing variation in climatic conditions under climate change directly influences plant-microbe interactions. To account for as many variables as possible that may play critical roles in such interactions, the use of an integrated modeling approach is necessary. Here, we report for the first time a local impact assessment and adaptation study of future epidemics of kiwifruit bacterial blossom blight (KBB) in Jeonnam province, Korea, using an integrated modeling approach. This study included a series of models that integrated both the phenological responses of kiwifruit and the epidemiological responses of KBB to climatic factors with a 1 km resolution, under the RCP8.5 climate change scenario. Our results indicate that the area suitable for kiwifruit cultivation in Jeonnam province will increase and that the flowering date of kiwifruit will occur increasingly earlier, mainly due to the warming climate. Future epidemics of KBB during the predicted flowering periods were estimated using the Pss-KBB Risk Model over the predicted suitable cultivation regions, and we found location-specific, periodic outbreaks of KBB in the province through 2100. Here, we further suggest a potential, scientifically-informed, long-term adaptation strategy using a cultivar of kiwifruit with a different maturity period to relieve the pressures of future KBB risk. Our results clearly show one of the possible options for a local impact assessment and adaptation study using multiple models in an integrated way.

Impact Assessment of Climate Change on Disaster Risk in North Korea based on RCP8.5 Climate Change Scenario (RCP8.5 기후변화시나리오를 이용한 기후변화가 북한의 재해위험에 미치는 영향 평가)

  • Jeung, Se-Jin;Kim, Byung-Sik;Chae, Soo Kwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.809-818
    • /
    • 2018
  • In this paper, in order to evaluate the impact of future climate change in North Korea, we collected the climate data of each station in North Korea provided by WMO and expanded the lack of time series data. Using the RCP climate change scenario, And the impact of climate change on disasters using local vulnerability to disasters in the event of a disaster. In order to evaluate this, the 11 cities in North Korea were evaluated for Design Rainfall Load, human risk index (HRI), and disaster impact index (DII) at each stage. As a result, Jaffe increased from C grade to B grade in the Future 1 period. At Future 2, North Hwanghae proved to be dangerous as it was, and Gangwon-do and Hwanghae-do provincial grade rose to C grade. In the case of Future 3, Pyongyang City dropped from C grade to D grade, Hamgyong and Gyeongsang City descend from B grade to C grade, Gangwon-do and Jagangdo descend from C grade to D grade and Pyongyang city descend from C grade to D grade. Respectively.