• Title/Summary/Keyword: Cleavage reaction

Search Result 227, Processing Time 0.029 seconds

Facial Synthesis of Versatile Chiral Norbornenes as Leukotriene D4 Antagonists from D-glucose

  • Lim, Yoong-Ho;Koh, Dong-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.97-100
    • /
    • 2005
  • Chiral dienophile 5 was synthesized from D-glucose by consecutive diisopropylidenation, partial deprotection, diol cleavage, and Wittig reactions. Under thermal conditions, asymmetric Diels-Alder reaction between chiral dienophile and cyclopentadiene gave four possible chiral norbornenes stereoisomers whose absolute configurations were determined through CADD and NMR.

General Fragmentations of Alkaloids in Electrospray Ionization Tandem Mass Spectrometry

  • Shim, Hee Jung;Lee, Ji Ye;Kim, Byungjoo;Hong, Jongki
    • Mass Spectrometry Letters
    • /
    • v.4 no.4
    • /
    • pp.79-82
    • /
    • 2013
  • Various types of alkaloids observed in several herbal medicines were analyzed by electrospray ionization tandem mass spectrometry in positive ion mode. In the present study, MS/MS spectralpatterns were investigated for eight-types of alkaloids (aporpine, protoberberine, tetrahydroprotoberberine, benzylisoquinoline, protopine, phthalide, morpine, and bisbenzylisoquinoline). For aporpine- and protoberberine-type alkaloids, main fragmentations occurred at substituted groups on rigid ring structures, not showing ring fusion. Interesting fragmentations due to iminolization and retro-Diels-Alder (RDA) reaction were observed in MS/MS spectra of protopine- and tetrahydroprotobereberine-type alkaloids. Also, several types of fragmentations such as inductive cleavage and ${\alpha}$-cleavage, or bond cleavage between two ring structures were observed depending on their structural characteristics. These fragmentation patterns are expected to allow instant classification of the specific alkaloid type in various MS/MS spectra of alkaloids.

Solid-Phase Synthesis of Unfunctionalized Arenes Via the Traceless Cleavage of Sulfonate Linkers

  • Kim, Chul-Bae;Cho, Chul-Hee;Jo, Min-Jy;Park, Kwang-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3655-3659
    • /
    • 2011
  • The hydrogenolysis of polymer-bound arenesulfonates by 2-propylmagnesium chloride was performed through reductive cleavage of the C-S bond in the presence of a nickel catalyst. The reaction underwent in the highest efficiency by adding 15 equiv of the nucleophile in two additions with $dppfNiCl_2$ in THF. Various unfunctionalized naphthalene, biphenyl, and stilbene derivatives were produced in good yields by the traceless sulfonate linker system at room temperature.

Molecular Orbital Theory on Cellulolytic Reactivity Between pNP-Cellooligosccharides and ${\beta}$-Glucosidase from Cellulomonas uda CS1-1

  • Yoon, Min-Ho;Nam, Yun-Kyu;Choi, Woo-Young;Sung, Nack-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1789-1796
    • /
    • 2007
  • A ${\beta}$-glucosidase with the molecular mass of 160,000 Da was purified to homogeneity from cell extract of a cellulolytic bacterium, Cellulomonas uda CS1-1. The kinetic parameters ($K_m$ and $V_{max}$) of the enzyme were determined with pNP-cellooligosccharides (DP 1-5) and cellobiose. The molecular orbital theoretical studies on the cellulolytic reactivity between the pNP-cellooligosaccharides as substrate (S) molecules and the purified ${\beta}$-glucosidase (E) were conducted by applying the frontier molecular orbital (FMO) interaction theory. The results of the FMO interaction between E and S molecules verified that the first stage of the reaction was induced by exocyclic cleavage, which occurred in an electrophilic reaction based on a strong charge-controlled reaction between the highest occupied molecular orbital (HOMO) energy of the S molecule and the lowest occupied molecular orbital (LUMO) energy of the hydronium ion ($H_3O^+$), more than endocyclic cleavage, whereas a nucleophilic substitution reaction was induced by an orbital-controlled reaction between the LUMO energy of the oxonium ion ($SH^+$) protonated to the S molecule and the HOMO energy of the $H_2O_2$ molecule. A hypothetic reaction route was proposed with the experimental results in which the enzymatic acid-catalyst hydrolysis reaction of E and S molecules would be progressed via $SN_1$ and $SN_2$ reactions. In addition, the quantitative structure-activity relationships (QSARs) between these kinetic parameters showed that $K_m$ has a significant correlation with hydrophobicity (logP), and specific activity has with dipole moment, respectively.

Sequential Polyadenylation to Enable Alternative mRNA 3' End Formation

  • Yajing Hao;Ting Cai;Chang Liu;Xuan Zhang;Xiang-Dong Fu
    • Molecules and Cells
    • /
    • v.46 no.1
    • /
    • pp.57-64
    • /
    • 2023
  • In eukaryotic cells, a key RNA processing step to generate mature mRNA is the coupled reaction for cleavage and polyadenylation (CPA) at the 3' end of individual transcripts. Many transcripts are alternatively polyadenylated (APA) to produce mRNAs with different 3' ends that may either alter protein coding sequence (CDS-APA) or create different lengths of 3'UTR (tandem-APA). As the CPA reaction is intimately associated with transcriptional termination, it has been widely assumed that APA is regulated cotranscriptionally. Isoforms terminated at different regions may have distinct RNA stability under different conditions, thus altering the ratio of APA isoforms. Such differential impacts on different isoforms have been considered as post-transcriptional APA, but strictly speaking, this can only be considered "apparent" APA, as the choice is not made during the CPA reaction. Interestingly, a recent study reveals sequential APA as a new mechanism for post-transcriptional APA. This minireview will focus on this new mechanism to provide insights into various documented regulatory paradigms.

Purification and Biochemical Characterization of Sucrose Synthase from the Cytosolic Fraction of Chickpea (Cicer arietinum L. cv. Amethyst) Nodules

  • Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.12-18
    • /
    • 1999
  • Sucrose synthase (EC 2.4.1.13) has been purified from the plant cytosolic fraction of chickpea (Cicer arietinum L. cv. Amethyst) nodules. The native enzyme had a molecular mass of $356{\pm}15kD$. The subunit molecular mass was $87{\pm}2kD$, and a tetrameric structure is proposed for sucrose synthase of chickpea nodule. Optimum activities in the sucrose cleavage and synthesis directions were at pH 6.5 and 9.0, respectively. The purified enzyme displayed typical hyperbolic kinetics with substrates in cleavage and synthesis reactions. Chickpea nodules sucrose synthase had a high affinity for UDP ($K_m$, $8.0{\mu}M$) and relatively low affinities for ADP ($K_m$, 0.23 mM), CDP ($K_m$, 0.87 mM), and GDP ($K_m$, 1.51 mM). The $K_m$ for sucrose was 29.4 mM. In the synthesis reaction, UDP-glucose ($K_m$, $24.1{\mu}M$) was a more effective glucosyl donor than ADP-glucose ($K_m$, 2.7 mM), and the $K_m$ for fructose was 5.4 mM. Divalent cations, such as $Ca^{2+}$, $Mg^{2+}$, and $Mn^{2+}$, stimulated the enzyme activity in both the cleavage and synthesis directions, and the enzyme was very sensitive to inhibition by $HgCl_2$ and $CuSO_4$.

  • PDF

Catabolic Degradation of 4-Chlorobiphenyl by Pseudomonas sp. DJ-12 via Consecutive Reaction of meta-Cleavage and Hydrolytic Dechlorination

  • Chae, Jong-Chan;Kim, Eunheui;Park, Sang-Ho;Kim, Chi-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.449-455
    • /
    • 2000
  • Pseudomonas sp. strain DJ-12 is a bacterial isolate capable of degrading 4-chlorobiphenyl (4CBP) as a carbon and energy source. The catabolic degradation of 4CBP by the strain DJ-12 was studied along with the genetic organization of the genes responsible for the crucial steps of the catabolic degradation. The catabolic pathway was characterized as being conducted by consecutive reactions of the meta-cleavage of 4CBP, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, and meta-cleavage of protocatechuate. The pcbC gene responsible for the meta-cleavage of 4CBP only showed a 30 to 40% homology in its deduced amino acid sequence compared to those of the corresponding genes from other strains. The amino acid sequence of 4CBA-CoA dechlorinase showed an 86% homology with that of Pseudomonas sp. CBS3, yet only a 50% homology with that of Arthrobacter spp. However, the fcb genes for the hydrolytic dechlorination of 4CBA in Pseudomonas sp. DJ-12 showed an uniquely different organization from those of CBS3 and other reported strains. Accordingly, these results indicate that strain DJ-12 can degrade 4CBA completely via meta-cleavage and hydrolytic dechlorination using enzymes that are uniquely different in their amino acid sequences from those of other bacterial strains with the same degradation activities.

  • PDF

Kinetic Analysis of Isocitrate lyase from Saccharomycopsis lipolytica (Saccharomycopsis lipolytica isocitrate lyase의 Kinetic 분석)

  • Cho, Seok-Gum;Chung, Dong-Hyo
    • Applied Biological Chemistry
    • /
    • v.31 no.2
    • /
    • pp.137-142
    • /
    • 1988
  • The analysis of condensation and cleavage reaction was carried out at $30^{\circ}C$ and pH 7.0 with purified isocitrate lyase from Saccharomycopsis lipolytica ATCC 44601. The Km values for condensation reaction of glyoxylate and succinate were 0.06 and 0.21 mM, respectively. In the cleavage reaction, glyoxylate was a linear competitive inhibitor with a Ki of 0.22 mM and succinate was a linear noncompetitive inhibitor with a Ki of 0.82 mM. Therefore, these kinetic analyses showed that the enzyme functioned in a ordered reaction with glyoxylate binding before succinate in the condensation reaction. 3-Bromopyruvate(BrP) was found to be irreversibly inactivation showing saturation kinetics, the inactivation half-time was 0.15 min and $K_{BrP}$ was 0.032 mM, and substrate or reactant protected against the inactivation.

  • PDF

Synthesis of 4-Phenyltetralone Derivatives and Reaction Mechanism

  • Kwon, Soon-Kyoung;Park, Young-Nam
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.329-331
    • /
    • 2000
  • 4-(p-Chlorophenyl)tetralone (6) and 7-chloro-5-(p-chlorophenyl)tetralone (9) are key intermediates for the development of benzazepinone derivative haftens. These compounds could be synthesized from 4-phenyltetralone derivatives by triflic acid catalyzed Friedel-Crafts reaction. The reaction mechanism of Friedel-Crafts alkylation/acylation with lactones in triflic acid is presented. According to our tentative research, ring opening of protonated lactone (2) occurs in alkyl cleavage and the rate of the reaction is not dependent on concentration of triflic acid. So, alkylation of lactone in Friedel-Crafts reaction is presumed to be $A_{AL}$ 1. In second step, intramolecular acylation of the intermediates 4 to 6, 4 can be transformed to a triflic acid-carboxylic anhydride and then the cyclization is undergone after leaving of the triflate anion.

  • PDF

Cleavage of Benzyl and p-Methoxybenzyl Ethers Using Chlorosulfonyl Isocyanate Reaction

  • Kim, Ji-Duck;Jung, Young-Hoon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.349.2-350
    • /
    • 2002
  • Deprotection of the benzyl group has been widely used in multi-step organic synthesis with a variety of reaction conditions. including catalytic hydrogenolysis. Lewis acids such as FeCl$_3$ or MgBr$_2$ and lithium naphthalenide. However. these procedures sometimes can be problematic with multifunctional substrates. such as unsaturated bonds during hydrogenolysis. an acid-labile moiety in FeCl$_3$ and a easily reducible functional group in lithium naphthalenide. (omitted)

  • PDF