DOI QR코드

DOI QR Code

Solid-Phase Synthesis of Unfunctionalized Arenes Via the Traceless Cleavage of Sulfonate Linkers

  • Kim, Chul-Bae (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Cho, Chul-Hee (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Jo, Min-Jy (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Park, Kwang-Yong (School of Chemical Engineering and Materials Science, Chung-Ang University)
  • Received : 2011.07.12
  • Accepted : 2011.08.12
  • Published : 2011.10.20

Abstract

The hydrogenolysis of polymer-bound arenesulfonates by 2-propylmagnesium chloride was performed through reductive cleavage of the C-S bond in the presence of a nickel catalyst. The reaction underwent in the highest efficiency by adding 15 equiv of the nucleophile in two additions with $dppfNiCl_2$ in THF. Various unfunctionalized naphthalene, biphenyl, and stilbene derivatives were produced in good yields by the traceless sulfonate linker system at room temperature.

Keywords

References

  1. Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149-2154. https://doi.org/10.1021/ja00897a025
  2. Nandy, P. J.; Prakesch, M.; Khadem, S.; Reddy, P. T.; Sharma, U.; Arya, P. Chem. Rev. 2009, 109, 1999- 2060. https://doi.org/10.1021/cr800188v
  3. Kennedy, J. K.; Williams, L.; Bridges, T. M.; Daniels, R. N.; Weaver, D., Lindsley, C. W. Journal of Combinatorial Chemistry 2008, 10, 345-354. https://doi.org/10.1021/cc700187t
  4. Potyrailo, R. A.; Mirsky, V. M. Chem. Rev. 2008, 108, 770-813. https://doi.org/10.1021/cr068127f
  5. Maier, W.; Stowe, K.; Sieg, S. Angew. Chem., Int. Ed. 2007, 46, 6016. https://doi.org/10.1002/anie.200603675
  6. Potyrailo, R. A. Angew. Chem. Int. Ed. 2006, 45, 702-723. https://doi.org/10.1002/anie.200500828
  7. Tacheuchi, I.; Lauterbach, J.; Fasolka, M. J. Materialstoday 2005, 18.
  8. Boas, U.; Brask, J.; Jensen, K. J. Chem. Rev. 2009, 109, 2092-2118. https://doi.org/10.1021/cr068206r
  9. Zhang, W. Chem. Rev. 2009, 109, 749- 795. https://doi.org/10.1021/cr800412s
  10. Scott, P. J. H.; Steel, P. G. Eur. J. Org. Chem. 2006, 2251- 2268.
  11. James, I. W. Tetrahedron 1999, 55, 4855-4946. https://doi.org/10.1016/S0040-4020(99)00125-8
  12. Gil, C.; Brase, S. Curr. Opin. Chem. Biol. 2004, 8, 230-237. https://doi.org/10.1016/j.cbpa.2004.04.004
  13. Blaney, P.; Grigg, R.; Sridharan, V. Chem. Rev. 2002, 102, 2607-2624. https://doi.org/10.1021/cr0103827
  14. Phoon, C. W.; Sim, M. M. Curr. Org. Chem. 2002, 6, 937-964. https://doi.org/10.2174/1385272023373734
  15. Brase, S.; Dahmen, S. Chem. Eur. J. 2000, 6, 1899-1905. https://doi.org/10.1002/1521-3765(20000602)6:11<1899::AID-CHEM1899>3.0.CO;2-M
  16. Jung, K. W.; Zhao, X.-Y.; Janda, K. D. Tetrahedron 1997, 53, 6645-6652. https://doi.org/10.1016/S0040-4020(97)00222-6
  17. Jung, K. W.; Zhao, X.-Y.; Janda, K. D. Tetrahedron Lett. 1996, 37, 6491-6494. https://doi.org/10.1016/0040-4039(96)01419-0
  18. Sucholeiki, I. Tetrahedron Lett. 1994, 35, 7307-7310. https://doi.org/10.1016/0040-4039(94)85300-2
  19. Chen, Y.; Lam, Y.; Lai, Y.-H. Org. Lett. 2002, 4, 3935-3937. https://doi.org/10.1021/ol026797b
  20. Kroll, F. E. K.; Morphy, R.; Rees, D.; Gani, D. Tetrahedron Lett. 1997, 38, 8573-8576. https://doi.org/10.1016/S0040-4039(97)10291-X
  21. Zhao, X.-Y.; Jung, K. W.; Janda, K. D. Tetrahedron Lett. 1997, 38, 977-980. https://doi.org/10.1016/S0040-4039(96)02503-8
  22. Gayo, L. M.; Suto, M. J. Tetrahedron Lett. 1997, 38, 211-214. https://doi.org/10.1016/S0040-4039(96)02256-3
  23. May, P. J.; Bradley, M.; Harrowven, D. C.; Pallin, D. Tetrahedron Lett. 2000, 41, 1627-1630. https://doi.org/10.1016/S0040-4039(99)02345-X
  24. Pattarawarapan, M.; Chen, J.; Steffensen, M.; Burgess, K. J.Comb. Chem. 2001, 3, 102-116. https://doi.org/10.1021/cc000081v
  25. Vanier, C.; Lorge, F.; Wagner, A.; Mioskowski, C. Angew. Chem. Int. Ed. 2000, 39, 1679-1683. https://doi.org/10.1002/(SICI)1521-3773(20000502)39:9<1679::AID-ANIE1679>3.0.CO;2-4
  26. Cho, C.-H.; Park, H.; Park, M.-A.; Ryoo, T.-Y.; Lee, Y.-S.; Park, K. Eur. J. Org. Chem. 2005, 3177-3181.
  27. Kim, C.-B.; Cho, C.-H.; Kim, C. K.; Park, K. J. Comb. Chem. 2007, 9, 1157-1163. https://doi.org/10.1021/cc700112x
  28. Comely, A. C.; Gibson, S. E. Angew. Chem., Int. Ed. 2001, 40, 1012-1032. https://doi.org/10.1002/1521-3773(20010316)40:6<1012::AID-ANIE10120>3.0.CO;2-2
  29. Kim, C.-B.; Cho, C.-H.; Park, K. Bull. Korean Chem. Soc. 2007, 28, 281-284. https://doi.org/10.5012/bkcs.2007.28.2.281
  30. Davies, D. R.; Mamat, B.; Magnusson, O. T.; Christensen, J.; Haraldsson, M. H.; Mishra, R.; Pease, B.; Hansen, E.; Singh, J.; Zembower, D.; Kim, H.; Kiselyov, A. S.; Burgin, A. B.; Gurney, M. E.; Stewart, L. J. J. Med. Chem. 2009, 52, 4694-4715. https://doi.org/10.1021/jm900259h
  31. Delomenede, M.; Bedos-Belval, F.; Duran, H.; Vindis, C.; Baltas, M.; Nègre-Salvayre, A. J. Med. Chem. 2008, 51, 3171-3181. https://doi.org/10.1021/jm7014793
  32. Lion, C. J.; Matthews, C. S.; Stevens, M. F. G.; Westwell, A. D. J. Med. Chem. 2005, 48, 1292-1295. https://doi.org/10.1021/jm049238e
  33. Walter, G.; Liebl, R.; von Angerer, E. Bioorg. Med. Chem. Lett. 2004, 14, 4659-4663. https://doi.org/10.1016/j.bmcl.2004.06.098
  34. Iliya, I.; Ali, Z.; Tanaka, T.; Iinuma, M.; Furusawa, M.; Nakaya, K.-I.; Murata, J.; Darnaedi, D.; Matsuura, N.; Ubukata, M. Phytochemistry 2003, 62, 601-606. https://doi.org/10.1016/S0031-9422(02)00670-2
  35. Kawamoto, M.; Aoki, T.; Shiga, N.; Wada, T. Chem. Mater. 2009, 21, 564. https://doi.org/10.1021/cm8029032
  36. Mori, T.; Kyotani, M.; Akagi, K. Macromolecules 2008, 41, 607-613. https://doi.org/10.1021/ma702470t
  37. Burn, P. L.; Lo, S.-C.; Samuel, I. D. W. Adv. Mater. 2007, 19, 1675-1688. https://doi.org/10.1002/adma.200601592
  38. Momotake, A.; Arai, T. J. Photochem. Photobiol. C 2004, 5, 1-25. https://doi.org/10.1016/j.jphotochemrev.2004.01.001
  39. Markham, J. P. J.; Namdas, E. B.; Anthopoulos, T. D.; Samuel, I. D. W.; Richards, G. J.; Burn, P. L. Appl. Phys. Lett. 2004, 85, 1463-1465. https://doi.org/10.1063/1.1784521
  40. Sengupta, S.; Muhuri, S. Tetrahedron Lett. 2004, 45, 2895-2898. https://doi.org/10.1016/j.tetlet.2004.02.068
  41. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539-541. https://doi.org/10.1038/347539a0
  42. Gierschner, J.; Cornil, J.; Egelhaaf, H.-J. Adv. Mater. 2007, 19, 173-191. https://doi.org/10.1002/adma.200600277
  43. Hohnholz, D.; Schweikart, K.-H.; Subramanian, L. R.; Wedel, A.; Wischert, W.; Hanack, M. Synth. Met. 2000, 110, 141-152. https://doi.org/10.1016/S0379-6779(99)00291-X
  44. Martin, R. E.; Diederich, F. Angew. Chem., Int. Ed. 1999, 38, 1351-1377.
  45. Um, S.-I.; Lee, J.-K.; Kang, Y.; Baek, D.-J. Dyes Pigm. 2006, 70, 84-90. https://doi.org/10.1016/j.dyepig.2005.04.005
  46. Sengupta, S. Tetrahedron Lett. 2003, 44, 307-310. https://doi.org/10.1016/S0040-4039(02)02519-4
  47. Cho, C.-H.; Kim, C.-B.; Park, K. J. Comb. Chem. 2010, 12, 45-50. https://doi.org/10.1021/cc900099g

Cited by

  1. 1-(α-Aminobenzyl)-2-naphthol as phosphine-free ligand for Pd-catalyzed Suzuki and one-pot Wittig-Suzuki reaction vol.26, pp.8, 2012, https://doi.org/10.1002/aoc.2877
  2. Chemoselective and Sequential Palladium-Catalyzed Couplings for the Generation of Stilbene Libraries via Immobilized Substrates vol.18, pp.5, 2016, https://doi.org/10.1021/acscombsci.6b00023
  3. Combinatorial Chemistry Online : Volume 14, Issue 2, February 2012 vol.14, pp.2, 2011, https://doi.org/10.1016/j.comche.2012.01.001