• Title/Summary/Keyword: Cleavage fracture.

Search Result 111, Processing Time 0.023 seconds

Effect of Implant Types and Bone Resorption on the Fatigue Life and Fracture Characteristics of Dental Implants (임플란트 형태와 골흡수가 임플란트 피로 수명 및 파절 특성에 미치는 효과에 관한 연구)

  • Won, Ho-Yeon;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.121-143
    • /
    • 2010
  • To investigate the effect of implant types and bone resorption on the fracture characteristics. 4 types of Osstem$^{(R)}$Implant were chosen and classified into external parallel, internal parallel, external taper, internal taper groups. Finite elements analysis was conducted with ANSYS Multi Physics software. Fatigue fracture test was performed by connecting the mold to the dynamic load fatigue testing machine with maximum load of 600N and minimum load of 60N. The entire fatigue test was performed with frequency of 14Hz and fractured specimens were observed with Hitachi S-3000 H scanning electron microscope. The results were as follows: 1. In the fatigue test of 2 mm exposed implants group, Tapered type and external connected type had higher fatigue life. 2. In the fatigue test of 4 mm exposed implants group, Parallel type and external connected types had higher fatigue life. 3. The fracture patterns of all 4 mm exposed implant system appeared transversely near the dead space of the fixture. With a exposing level of 2 mm, all internally connected implant systems were fractured transversely at the platform of fixture facing the abutment. but externally connected ones were fractured at the fillet of abutment body and hexa of fixture or near the dead space of the fixture. 4. Many fatigue striations were observed near the crack initiation and propagation sites. The cleavage with facet or dimple fractures appeared at the final fracture sites. 5. Effective stress of buccal site with compressive stress is higher than that of lingual site with tensile stress, and effective stress acting on the fixture is higher than that of the abutment screw. Also, maximum effective stress acting on the parallel type fixtures is higher. It is careful to use the internal type implant system in posterior area.

Petrochemistry of the Peridotites within an Andong Ultramafic Complex and Characteristics of Asbestos Occurrences (안동 초염기성암 복합체 내 페리도타이트의 암석지화학과 석면 산출 특성)

  • Song, Suckhwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.15-39
    • /
    • 2019
  • An ultramafic complex occurs as an isolated lenticular body in the Andong area. The Andong ultramafic complex comprises ultramafic and mafic rocks, but mainly peridotites. The complex extends for several kilometer to ENE direction, adjacent to the Andong fault line. This study is for petrochemistry of the peridotites within the ultramafic complex and characteristics of asbestos occurrences. The peridotites are igneous origin, ranging from lherzolite to wehrlites and are characterized by high Fo olivine ($Fo_{0.85-0.87}$), Mg clinopyroxene ($Mg_{87.5-93.5}$), and tremolitic to tschermakitic hornblende. Geochemically, these rocks show high magnesium number (mainly Mg = 85.3-87.38) and transitional element and low alkali element contents. The peridotites host asbestos, including chrysotile, tremolite and actinolite asbestos, but dominated by amphibole asbestos. The amphibole asbestos are found along small fault face, and cleavage and fracture showing several cm to ten cm in width as slip and oblique fibers, while the chryostiles occur at cleavage and vein showing several mm-cm in width as cross and slip fibers. They are confirmed by PLM, XRD and SEM results. Overall characteristics of peridotites from the Andong ultramafic complex and occurrences of the asbestos are similar to those of worldwide orogenic related Alpine type ultramafic rocks and serpentinized ultramafic bodies in Chungnam, Korea, respectively.

Analysis of Correlation between the Hydrogen Embrittlement and the Small Punch Test for Hydrogen-charged Dual Phase Steels (수소주입시킨 DP박강판의 SP시험과 수소취성 관계 해석)

  • Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.61-67
    • /
    • 2014
  • Small punch(SP) tests were performed on high strength Dual Phase(DP) steels in order to evaluate the behavior of hydrogen embrittlement. For this purpose, three different kinds of DP steel specimens were charged with hydrogen by electochemical hydrogen charging experiment. After charging with hydrogen, the amount of charged hydrogen was measured. The measurement results showed that amounts of charged hydrogen were largely dependent on the martensite volume fraction of DP steel. The hydrogen charging time of 25 hrs with current densities of 150 and $200mA/cm^2$ was investigated as saturation condition with hydrogen. The analysis results on the SP energy and height of SP bulbs after SP tests showed that those were decreased as the amount of charged hydrogen increased. Fractographs of SP bulbs were observed a brittle fracture mixed with quasi-cleavage fractures, layered structures and clear facets.

Degradation Damage Evaluation of High Temperature Structural Components by Electrochemical Anodic Polarization Test (전기화학적 양극분극시험에 의한 고온 설비부재의 열화손상 평가)

  • Yu, Ho-Seon;Song, Mun-Sang;Song, Gi-Uk;Ryu, Dae-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1398-1407
    • /
    • 2000
  • The structural steels of power plant show the decrease of mechanical properties due to degradation such as temper embrittlement, creep damage and softening during long-term operation at high temper ature. The typical causes of material degradation damage are the creation and coarsening of carbides(M23C6, M6C) and the segregation of impurities(P, Sb and Sn) to grain boundary. It is also well known that material degradation induces the cleavage fracture and increases the ductile-brittle transition temperature of steels. So, it is very important to evaluate degradation damage to secure the reliable and efficient service condition and to prevent brittle failure in service. However, it would not be appropriate to sample a large test piece from in-service components. Therefore, it is necessary to develop a couple of new approaches to the non-destructive estimation technique which may be applicable to assessing the material degradation of the components with not to influence their essential strength. The purpose of this study is to propose and establish a new electrochemical technique for non-destructive evaluation of material degradation damage for Cr-Mo steels which is widely used in the high temperature structural components. And the electrochemical anodic polarization test results are compared with those of semi-nondestructive SP test.

A Study on Fretting Fatigue Characteristic of SCM 420 Steel (SCM 420강의 프레팅 피로 특성에 관한 연구)

  • Kim, T.G.;Kim, H.S.;Yoon, S.J.;Kim, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • Fretting fatigue behavior of SCM420 steel commonly used in the automotive industry for structural applications was investigated in this study. In addition, the effect of bridge pad on the fretting fatigue test was evaluated from different pad materials and following conclusions were drawn. Simple fatigue limit of SCM 420 steel was determined to be 350 MPa while this value was 225 MPa and 285.5 MPa with SCM420H and with SM45C pad, respectively. Reduction in fatigue limit was, thus found to be 35.7% and 17.9% with SCM 420H pad and SM45C pad, respectively. Results of fracture surface observation revealed that typical striation pattern of fatigue failure existed as well as dimpled and cleavage frature appearance was found in final fractured region. From the EDS compositional analysis, test sample and pad part all had high signals for oxygen and iron, suggesting that worn particles might be iron oxide, although exact chemical composition has to be confirmed. Considerable reduction in fatigue life was apparent in SCM 420 steel under fretting fatigue against simple fatigue. Such reduced fatigue life by fretting damage should be considered as an important factor not only in the viewpoint of repairing but also inevitably in the design stage of structural components.

A Study on the effect of the multi-pass SMAW welding on the characteristic of the underwater welding areas (SMAW 수중 다층용접시 용접부 특성에 관한 연구)

  • 최기용;이상율;이보영;이병훈;이상용;박성두
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.55-62
    • /
    • 1998
  • While excellent joint quality has been obtained using dry chamber underwater welding methods, the size limitations imposed by this process restrict its use for underwater construction work. The wet underwater shielded metal-arc welding eliminates this restriction but suffers from poor weld properties by the 1-pass bead-on-plate welding due to the excessive diffusible hydrogen. On the other hand, in the wet underwater welding, it is well known that the quantity of diffusible hydrogen in multi-pass welded parts reduce to less than that in 1-pass welded parts. Therefore, in this paper, welding experiments are made the 3-pass bead-on-plate welds by using TMCP and normalized steel plates and E4301 and cellulose coated electrode. After that, The amounts of the hydrogen absorbed into the 3-pass welded area were measured according to the JIS Z 3118 specification. The microstructural changes as well as the microhardness distribution after the underwater 3-pass welding were also investigated using Vickers microhardness tester and S.E.M and O.M. The results indicated that the quantity of diffusible hydrogen in 3-pass welded areas was reduced little less than a half of one of that in 1-pass welded areas at the specific welding condition. As a result, the cold cracking of 3-pass welded areas decreased by reduced effect of diffusible hydrogen. In the underwater 3-pass welding, the micrography of cold cracking fracture surface showed mainly the cleavage of hydrogen embrittlement.

  • PDF

The Effects of Heat Treatment Temperature on Mechanical Property of 93W-6.3Ni-0.7Fe Heavy Alloy (93W-6.3Ni-0.7Fe 중합금에서 열처리온도에 따른 기계적 성질변화)

  • 김은표
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.42-49
    • /
    • 1998
  • A study on the improvement of the impact energy in 93W heavy alloy with a Ni/Fe ratio of 9/1 has been carried out as a function of heat treatment temperature. The obtained results were compared to that of the traditional alloy system in which the Ni/Fe ratio is 7/3 or 8/2. With increasing heat treatment temperature from 1150 to 125$0^{\circ}C$, the impact energy of the alloy with the Ni/Fe ratio of 9/1 is remarkably increased from 42 to 72 J, which is higher than that of traditional alloy, up to 118$0^{\circ}C$ and then saturated. Fracture mode was also changed from brittle W/W boundary failure to W cleavage. The temperature showing the dramatic shrinkage by dilatometric anaysis of the heavy alloy with Ni/Fe ratio of 9/1 was found to be 1483 $^{\circ}C$, which is higher than that (146$0^{\circ}C$) of the heavy alloy with Ni/Fe ratio of 7/3. Auger Electron Spectroscopy showed that the segregation of impurities, such as S, P, and C in W/W grain boundary was considerably decreased with increasing heat treatment temperature from 1150 to l18$0^{\circ}C$. From the above results, it was found that the impurity segregation in W/W grain boundary played an important role on the decrease of impact properties, and the heat treatment temperature should be appropriately chosen, as considering the Ni/Fe ratio of the alloy, in order to get good impact properties.

  • PDF

Separation Phenomenon Occurring during Charpy Impact test of API X80 Linepipe Steels (API X80 라인파이프강의 샤르피 충격 시험 시 발생하는 파열 현상 연구)

  • Shin, Sang Yong;Hong, Suckmin;Bae, Jin-ho;Kim, Kisoo;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.155-168
    • /
    • 2009
  • In this study, microstructural investigation was conducted on the separation phenomenon occurring during Charpy impact tests of API X80 linepipe steels. Particular emphasis was placed on the role of microstructural phases present in the API X80 steels such as acicular ferrite, bainite, and hard secondary phases. Detailed microstructural analysis of fractured impact specimens showed that highly elongated bainite worked as prior initiation sites for separations, and that the number and length of separations increased with increasing volume fraction of bainite. In the steels having high work hardenability, tearing-shaped separations were found because the hammer-impacted region was seriously hardened during the impact test, which led to the reduction in the impact toughness. As the test temperature decreased, the tendency of separations increased, but separations were not observed when the cleavage fracture prevailed at very low temperatures. Thus, the minimization of the formation of bainite and secondary phases in the steels would be beneficial for preventing or minimizing separations because separations deteriorated low-temperature impact toughness.

Occurrence and Mineralogical Characteristics of Asbestos in Dolostone at Ungdo, Seosan (서산 웅도 백운암 내 석면 산출 및 광물학적 특성 규명)

  • Kim, Seon-Ok;Lee, Minhee;Jung, Hyunjung;Shin, Wonji
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.489-496
    • /
    • 2014
  • The occurrence and mineralogical characteristics of asbestos in dolostone at Ungdo, Seosan were investigated by analyses of PLM, XRD, and SEM/EDS. Representative outcrops of dolostone at Ungdo were examined and four dolostone samples were collected according the occurrence type to identify the shape of asbestos in dolostone samples. The host rock of dolostone had been produced from the hydrothermal alteration and/or thermal metamorphism of which main source was assumed as the acidic granite. Tremolites were observed near the cracks or fractures of the dolostone as tamping or gob types. From the mineralogical analyses, main minerals of dolostone were dolomite with calcite, quartz, talc, amphibole, and pyroxene. From SEM/EDS analyses, tremolite-actinolite asbestoses were observed in dolostone and their shapes were prismatic and fibrous (less than $1{\mu}m$ in width). Non-asbestos prismatic forms were also found and they would transfer to asbestos particles resulting from the cleavage and fracture of the prismatic particles. Overall results suggest that asbestoses in Ungdo dolosotnes were mainly tremolite-actinolite and they were originated from the hydrothermal alteration of Ca-Mg rich dolostone.

Study on Hydrogen Embrittlement for API 5L X65 Steel Using Small Punch Test II : Weld Metal (소형펀치 시험을 이용한 API 5L X65 강의 수소취화에 관한 연구 II : 용접부)

  • Jang, Sang-Yup;Yoon, Kee-Bong
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.56-62
    • /
    • 2009
  • With weld metal of X65 steel, hydrogen was charged by electro-chemical method and mechanical behavior such as strength was measured by the small punch test. The weld metal was more sensitive to hydrogen charging than the case of base metal. The small punch (SP) strength was decreased as the hydrogen contents increased. Magnitude of strength decrease was dependent on current density, temperature, charging time. Current density and charging time have significant effect on the mechanical properties but temperature of electrolyte has limited effect. Fractured surfaces of the tested specimens were observed by SEM (scanning electron microscope). In the hydrogen charged specimens cleavage fracture were observed, which is consistent with the SP test results. Since the testing procedure for studying hydrogen embrittlement proposed in this study has shown good reproducibility of test results, the proposed method can be assumed to be a reliable test procedure. Using the electrochemical charging and the small punch test, the change of SP strength for X65 weld metal due to hydrogen embritlement could be evaluated sensitively.