DOI QR코드

DOI QR Code

Analysis of Correlation between the Hydrogen Embrittlement and the Small Punch Test for Hydrogen-charged Dual Phase Steels

수소주입시킨 DP박강판의 SP시험과 수소취성 관계 해석

  • Park, Jae-Woo (Dept. of New Energy Engineering, Graduate School of Energy & Environment, Seoul National University of Science & Technology) ;
  • Kang, Kae-Myung (Dept. of Materials Science & Engineering, Seoul National University of Science & Technology)
  • 박재우 (서울과학기술대학교 에너지환경대학원 신에너지공학과) ;
  • 강계명 (서울과학기술대학교 신소재공학과)
  • Received : 2014.01.09
  • Accepted : 2014.02.24
  • Published : 2014.02.28

Abstract

Small punch(SP) tests were performed on high strength Dual Phase(DP) steels in order to evaluate the behavior of hydrogen embrittlement. For this purpose, three different kinds of DP steel specimens were charged with hydrogen by electochemical hydrogen charging experiment. After charging with hydrogen, the amount of charged hydrogen was measured. The measurement results showed that amounts of charged hydrogen were largely dependent on the martensite volume fraction of DP steel. The hydrogen charging time of 25 hrs with current densities of 150 and $200mA/cm^2$ was investigated as saturation condition with hydrogen. The analysis results on the SP energy and height of SP bulbs after SP tests showed that those were decreased as the amount of charged hydrogen increased. Fractographs of SP bulbs were observed a brittle fracture mixed with quasi-cleavage fractures, layered structures and clear facets.

고강도 DP강의 수소취성 거동을 소형펀치시험을 통해 평가하였다. 이를 위해 첨가원소가 각기 다른 3종의 DP강 시험편에 전기화학적 방법으로 수소를 강제 주입시켰다. 수소주입 후, 수소주입량을 측정하였다. 수소주입량은 마르텐사이트 부피분율에 크게 의존하는 것으로 조사되었다. 전류밀도 150, $200mA/cm^2$ 조건에서 25시간이 포화상태에 도달하는 수소주입조건으로 나타났다. SP시험 후 SP에너지와 SP bulb 형상을 비교한 결과, 수소주입량의 증가에 따라 SP에너지와 SP bulb 높이가 감소하는 것으로 나타났다. 또한 SP bulb 파단면에서는 뚜렷한 facet와 층상형태의 벽개 파단면이 관찰되어 수소취성화를 관찰할 수 있었다.

Keywords

References

  1. J. P. Hirth, Matell. Trans. A, 11, 861 (1980). https://doi.org/10.1007/BF02654700
  2. R. G. Davies, Metall. Trans. A, 12, 1667 (1981). https://doi.org/10.1007/BF02643572
  3. T. Alp, F. I. Iskanderani, A. H. Zahed, J. Mater. Sci., 26, 5644 (1991). https://doi.org/10.1007/BF02403969
  4. J. Watanabe, T. Takai, M. Nagumo, J. Iron Steel Inst. Jpn., 82, 947 (1996).
  5. G. Katano, K. Ueyama, M. Mori, J. Mater. Sci., 36, 2277 (2001). https://doi.org/10.1023/A:1017568706014
  6. K. M. Kang, J. W. Park, Kor. J. Mater. Res. 20, 581 (2010) https://doi.org/10.3740/MRSK.2010.20.11.581
  7. J. U. Choi, J. W. Park, K. M. Kang, Kor. J. Mater. Res., 21, 581 (2011). https://doi.org/10.3740/MRSK.2011.21.11.581
  8. C. C. Lee, J. W. Park, K. M. Kang, J. Kor. Inst. Surf. Eng., 45, 130 (2012). https://doi.org/10.5695/JKISE.2012.45.3.130
  9. J. W. Park, K. M. Kang, Kor. J. Mater. Res. 22, 29 (2012). https://doi.org/10.3740/MRSK.2012.22.1.029
  10. K. M. Kang, J. W. Park, J. U. Choi, J. Kor. Inst. Surf. Eng., 46, 48 (2013). https://doi.org/10.5695/JKISE.2013.46.1.048
  11. J. U. Choi, J. W. Park, K. M. Kang, J. Kor. Inst. Surf. Eng., 46, 126 (2013). https://doi.org/10.5695/JKISE.2013.46.3.126
  12. Y. C. Choi, J. W. Park, K. M. Kang, J. Kor. Inst. Surf. Eng., 46, 229 (2013). https://doi.org/10.5695/JKISE.2013.46.5.229
  13. A. Chatterjee, R. G. Hoagland and J. P. Hirth, Mater. Sci. Eng. A, 142, 235 (1991). https://doi.org/10.1016/0921-5093(91)90662-7
  14. L. Marchetti, E. Herms, P. Laghoutaris, J. Chene, Int. J. Hydrogen Energy, 36, 15880 (2011). https://doi.org/10.1016/j.ijhydene.2011.08.096

Cited by

  1. Treatment of Hydrochloric acid from Regeneration and Scrubber system of Cold Rolling Mill Plant with Micro-bubble vol.17, pp.2, 2015, https://doi.org/10.17663/JWR.2015.17.2.118