• 제목/요약/키워드: Cleat

검색결과 38건 처리시간 0.025초

자전거 운동 중 클릿의 위치 변화에 따른 페달링 수행능력 비교 (The Comparison of Pedalling Performance to according to the Position of Shoe Cleat in Triathletes During Cycling)

  • 박찬호;최보경;허보섭;김용재
    • 수산해양교육연구
    • /
    • 제29권2호
    • /
    • pp.537-543
    • /
    • 2017
  • The purpose of this research is to investigate the effects of different shoe-cleat position on pedalling performance. Four male elite triathletes(age: $22.00{\times}2.16years$, height: $175.12{\pm}8.06cm$, weight: $71.20{\pm}7.89kg$, body fat: $16.62{\pm}3.56%$) and three female elite triathletes(age: $20.00{\pm}1years$, height: $158.40{\pm}2.42cm$, weight: $51.30{\pm}3.89kg$, body fat: $19.26{\pm}2.28%$) participated in 10km time trial and 30sec time trial pedaling tests with the individual time trials based on different shoe-cleat position(cleat front: CF, cleat back: CB). The subjects performed one trial with each type of shoe-cleat position. Maximal power output and average speed were not significantly different during 30s time trial in CF compared with CB. Average power, RPM, and HR were not significantly different during 10k time trial in CF compared with CB. Split time in 1km, 5km, 9km were significantly reduced during 10k time trial in CB compared with CF. We conclude that there was performance advantage in CB using shoe-cleat back position in comparison with CF using shoe-cleat front position.

A Study on the Adjustment Method of Bicycle Shoe Cleat for Bicycle Fitting System

  • Shon, Gyoung-Hoan
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.93-102
    • /
    • 2019
  • The nation's fraternity and elite players who have built up a global bicycle infrastructure often find it to be a problem with the bicycle's speed and speed reduction, pain in knees and hip joints, or even with the bike itself, or with the bike's own physical defects or a riding posture. However, we found that most cases of cleat adjustment errors were likely to be true. Accurate adjustment of the cleats is the most important of the entire fitting process and can be the basis for improving the ability of the bicycle rider and preventing injury. Therefore, the study was intended to give a prior study of bicycle fitting, which can improve bicycle efficiency and prevent injury when riding bicycle, and specific ways of adjusting bicycle shoe cleats, and the following results were obtained. First, the cleat characteristics of Shimano, LOOK and Speedplay, which are currently used in public, and the characteristics during the cleat adjustment process, were derived. In addition, the structure and characteristics of dedicated shoes using cleats and the method of using pedalling by the structure of shoes after adjusting the cleats were derived. Second, the position of the shoe and its relationship with torque in pedalling was discussed, and the method of adjusting front and back of cleats was derived. Third, leg length, ASIS, Q-Angle and Q-factor etc. were analyzed and the method of setting and adjusting cleat left and right values were derived. Fourth, the relationship between walking angle and cleat rotation was analyzed, the method was derived, and the torque size and angle behind the cleat adjustment were compared and analyzed using the spinner to indicate the torque and the effective mean torque angle after the cleat adjustment.

외연적 유한요소법을 이용한 패턴 타이어에 대한 돌기물 통과시의 동적 특성 해석 (Transient Dynamic Analysis of a Patterned Tire Rolling over a Cleat with an Explicit Finite Element Program)

  • 김기운;정현성;범현규
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.164-170
    • /
    • 2003
  • The finite element analysis of tires has been conventionally performed by either neglecting tread pattern or modeling only circumferential grooves. Besides, the tire analysis has been mainly limited to static or steady state rolling analysis. In this paper, a transient dynamic analysis of a patterned tire rolling over a cleat with an explicit finite element program is presented. The patterned tire with detailed tread blocks is modeled by a systematic mesh generation procedure, in which tire body and tread pattern meshes are separately generated in the beginning and then both meshes are combined by the tie constraint method. The cleat impact analysis is conducted by using both the patterned tire and the smooth tire models to predict the cleat enveloping characteristics. It is seen that the analysis results of the patterned tire model are in a good agreement with the experimental results.

Connections of sleeve joint purlin system

  • Tan, S.H.;Seah, L.K.;Li, Y.
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.1-16
    • /
    • 2002
  • This paper presents the findings of an investigation carried out to determine the most appropriate connections, in terms of rotational stiffness, to use for the optimum design of cold-formed Zed section sleeve joint purlin system. Experiments and parametric studies were conducted to investigate the effects of geometric variables on the behavior of the sleeve-purlin and cleat-purlin connections of the sleeve joint purlin system. The variables considered were purlin size and thickness, sleeve size, thickness, length and bolt position. The test results were used to verify the empirical expressions, developed herein, employed to determine the rotational stiffness of connections. With the predicted connection stiffness, the most suitable sleeve-purlin and cleat-purlin connections can be selected so as to produce an optimum condition for the sleeve joint purlin system.

Differences in the Joint Movements and Muscle Activities of Novice according to Cycle Pedal Type

  • Seo, Jeong-Woo;Kim, Dae-Hyeok;Yang, Seung-Tae;Kang, Dong-Won;Choi, Jin-Seung;Kim, Jin-Hyun;Tack, Gye-Rae
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.237-242
    • /
    • 2016
  • Objective: The purpose of this study was to compare the joint movements and muscle activities of novices according to pedal type (flat, clip, and cleat pedal). Method: Nine novice male subjects (age: $24.4{\pm}1.9years$, height: $1.77{\pm}0.05m$, weight: $72.4{\pm}7.6kg$, shoe size: $267.20{\pm}7.50mm$) participated in 3-minute, 60-rpm cycle pedaling tests with the same load and cadence. Each of the subject's saddle height was determined by the $155^{\circ}$ knee flexion angle when the pedal crank was at the 6 o'clock position ($25^{\circ}$ knee angle method). The muscle activities of the vastus lateralis, tibialis anterior, biceps femoris, and gastrocnemius medialis were compared by using electromyography during 4 pedaling phases (phase 1: $330{\sim}30^{\circ}$, phase 2: $30{\sim}150^{\circ}$, phase 3: $150{\sim}210^{\circ}$, and phase 4: $210{\sim}330^{\circ}$). Results: The knee joint movement (range of motion) and maximum dorsiflexion angle of the ankle joint with the flat pedal were larger than those of the clip and cleat pedals. The maximum plantarflexion timing with the flat and clip pedals was faster than that of the flat pedal. Electromyography revealed that the vastus lateralis muscle activity with the flat pedal was greater than that with the clip and cleat pedals. Conclusion: With the clip and cleat pedals, the joint movements were limited but the muscle activities were more effective than that with the flat pedal. The novice cannot benefit from the clip and cleat pedals regardless of their pull-up pedaling advantage. Therefore, the novice should perform the skilled pulling-up pedaling exercise in order to benefit from the clip and cleat pedals in terms of pedaling performance.

축구화 스터드 형태에 따른 무릎 모멘트의 변화 (Changes in Knee Joint Loading on Infilled Turf with Different Soccer Cleat Designs)

  • 박상균;이중숙;박승범
    • 한국운동역학회지
    • /
    • 제19권2호
    • /
    • pp.369-377
    • /
    • 2009
  • The purpose of this study was to determine the relationship between different soccer cleat designs and knee joint moments. Twelve physically active males (mean(SD): age: 26.4(6.2)yrs; height: 176.4(4.1)cm; mass: 74.0 (7.4)kg) were recruited Kinematic and force plate data were collected for all subjects during normal running and a $45^{\circ}$ cutting maneuver, called a v-cut. Both motions were performed at $4.0{\pm}0.2\;m/s$ on infilled artificial turf with three pairs of soccer cleats of different sole plate designs, and one pair of neutral running shoes. Inverse dynamics were used to calculate three dimensional knee joint moments, with repeated measures ANOVA and post hoc paired Student's t-test used to determine significance between shoe conditions. Significant differences were found in the extension moments of the knee for running trials, and for external rotation and adduction moments in the v-cutting trials. Knee moments were greater in v-cut than running, and the traditional soccer cleats (Copa Mondial and World Cup) tended to result in greater knee moments than the Nova runner or TRX soccer cleat. Cleat design was found to influence 3-dimensional knee moments in a v-cut maneuver. In the translational traction test, there were significant differences between all conditions. In the rotational traction test, friction with soccer shoes were greater than friction with running shoes. However, no differences were found between soccer shoes. Higher moments may lead to increased loads and stresses on knee joint structures, and thus, greater injury rates.

크리트 가진법을 이용한 타이어특성에 따른 로드노이즈 예측 연구 (Road Noise Prediction Based on Frequency Response Function of Tire Utilizing Cleat Excitation Method)

  • 박종호;황성욱;이상권
    • 한국소음진동공학회논문집
    • /
    • 제22권8호
    • /
    • pp.720-728
    • /
    • 2012
  • It is important for identification of noise and vibration problem of tire to consider influence of interaction between road and tire. A quantification of road noise is a challenging issue in vehicle NVH due to extremely complicated transfer paths of road noise as well as the difficulty in an experimental identification of input force from tire-road interaction. A noise caused by tire is divided into road noise(structure-borne noise) and pattern noise(air-borne noise). Pattern noise is caused by pattern shape of tire, which has larger than 500 Hz, but road noise is generated by the interactions between a tire and a vehicle body. In this paper, we define the quantitative analysis for road noise caused by interactions between tire and road parameters. For the identification of road noise, the chassis dynamometer that is equipped $10mm{\times}10mm $ square cleat in the semi-anechoic chamber is used, and the tire spindle forces are measured by load cell. The vibro-acoustic transfer function between ear position and wheel center was measured by the vibro-acoustic reciprocity method. In this study three tires with different type of mechanical are used for the experiment work.

석탄층 메탄가스 저류층에서 탄층 심도를 고려한 메탄가스의 흡착 특성에 관한 실험 연구 (Experimental Study on the Adsorption Characteristics of Methane Gas Considering Coalbed Depth in Coalbed Methane Reservoirs)

  • 송차영;이동진;이정환
    • 한국가스학회지
    • /
    • 제27권2호
    • /
    • pp.39-48
    • /
    • 2023
  • 본 연구에서는 석탄층 메탄가스(coalbed methane, CBM)의 저류층 조건에 따른 석탄의 메탄가스 흡착량 측정 실험을 수행하였다. 인도네시아 북부 칼리만탄 섬 내 임의의 광구에서 취득한 석탄시료를 사용하여 저류층 조건(상압 ~ 1,200 psi 압력범위, 15 ~ 45℃ 온도 범위)에서 탄층 입자에 대한 가스흡착량을 측정하였으며, 취득된 절대 흡착량에 삼각선형보간법을 적용하여 실험이 수행되지 않은 온도 및 압력 범위에서 최대 가스흡착량을 산출하였다. 실험 결과, 압력이 증가하고 온도가 감소할수록 석탄 입자에 대한 가스흡착량이 증가하지만 적정 심도(1,000 ft) 이상에서는 그 증가폭이 감소하는 것을 확인하였다. 유효응력을 고려하여 석탄층의 심도별 탄리 투과도와 탄리공극률을 산출한 결과, 탄리투과도는 28.86 ~ 46.81 md, 탄리공극률은 0.83 ~ 0.98%로 나타났다. 이는 석탄층에서 심도에 따른 투과도 감소폭이 크기 때문에 심도에 따른 가스 생산성이 크게 변함을 의미한다. 따라서 향후 석탄층 메탄가스 저류층에서 생산정 간격 설계 시 석탄층의 심도조건을 필수적으로 고려해야 한다.

유한요소법을 이용한 구동상태에 따른 타이어의 특성 분석 (Analysis of Tire Characteristics according to Driving Conditions using Finite Element Method)

  • 전도형;최주형;조진래;김기운
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.539-544
    • /
    • 2004
  • This paper discusses the measurement of tire driving performance for 2 types of tire model. Tire is almost composed of rubber, and this is related with the bearing capacity of tire due to the external force. In this study, an explicit time integration method has been used to simulate steady state rolling along a straight path and over a cleat. And analysis for tire dynamic response rolling over a cleat is importnat to study automobile NVH properties. Besides, the evaluation of contact shear force is perfomed for steady state rolling and braking state. The results show that there are noticeable differences between 205/60R15 and 225/60R15 tire model.

  • PDF

송전케이블 삼상단락 실증시험을 통한 전자력 대책방안 연구 (The Study on Countermeasures of Electromagnetic Force by Three Phase Short-Circuit Test of Underground Transmission Cable)

  • 강지원;박흥석;윤종건;김양상;홍동석;장우석
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2342-2348
    • /
    • 2009
  • Even though underground transmission cable is an essential transmission method to supply stable power for downtown and population center, the interaction of electromagnetic force by fault current is very large comparing to overhead transmission line due to restricted installation space such as tunnel, and close consideration is required for it. This paper presents countermeasures to reduce and release the effect of electromagnetic force with rope binding and installation of spacer and describes its efficacy through three phase short-circuit test, which will be utilized as basic materials for improvement and development of cleat, hanger, etc. to reduce and release effect of electromagnetic force in the future.