• Title/Summary/Keyword: Clean combustion

Search Result 266, Processing Time 0.028 seconds

Spray and Combustion Characteristics of DME and Diesel Fuel in a Common-Rail Diesel Engine (커먼레일 디젤엔진의 DME와 디젤연료의 분무 및 연소 특성)

  • Kim, Myung-Yoon;Ha, Sung-Yong;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.30-37
    • /
    • 2007
  • Dimethyl ether (DME) as an alternative fuel for compression ignition engine was investigated by measuring spray development processes, injection rate profiles, engine performance, and exhaust emission characteristics. The results of DME fueled engine were compared with those obtained by fueled with diesel. The experimental results showed that DME has approximately 0.03ms shorter injection delay and higher maximum injection rate than those of diesel fuel at a constant injection pressure of 50MPa. The spray visualization indicates that DME has shorter spray tip penetration due to its low density and faster evaporation. The combustion characteristics of DME operated engine provided faster ignition delay and three times shorter combustion duration. It is believed that the better evaporation and atomization characteristic of DME contributes the faster combustion. At all operating condition, soot emission was not detected due to the clean combustion of DME.

  • PDF

A Study on Characteristics of Mild Combustion using the Radiative Flamelet Model (비단열 화염편 모델을 이용한 Mild Combustor의 연소특성 해석)

  • Kim Gunhong;Kim Yongmo;Ahn Kookyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.60-67
    • /
    • 2005
  • Mild combustion or Flameless oxidation(FLOX) have been considered as one of the most prospective clean-combustion technologies to meet both the targets of high process efficiency and low pollutant emissions. A mild combustor with high air preheating and strong internal exhaust gas recirculation is characterized by relatively low flame temperature, low NOx emissions, no visible flame and no sound. In this study, the Steady Flamelet Approach has been applied to numerically analyze the combustion processes and NOx formation in the mild combustor. The detailed discussion has been made f3r the basic characteristics of mild combustor, numerical results and limitation of the present combustion modeling.

Influence of blending method with different SR on unburned carbon and NOx emission and its application

  • Lee, Byoung-Hwa;Edding, Eric G.;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.39-41
    • /
    • 2012
  • The influence of coal blending methods such as out-furnace (external or pre-mixed) blending and in-furnace (initially non-mixed) blending with different excess oxygen (highest, medium, and lowest stoichiometric conditions) on unburned carbon and NOx emissions of blend combustion in an entrained flow reactor (EFR) has been analyzed, using experimental and numerical approaches for binary coals used by Korean power plants. The results confirm that under the medium condition, contrasting processes such as reactive and un-reactive effects occur with SBRs in the out-furnace blending method. The in-furnace blending method results in an improvement in the efficiency of unburned carbon fractions and a further reduction in the NOx emission. Under the highest condition, the unburned carbon fraction in both the out-furnace and the in-furnace blending methods corresponds with the tendency under the medium condition with contrasting processes of lower magnitude, whereas the NOx emission in the highest condition increases slightly. Under the lowest conditions, the unburned carbon fraction in the out-furnace blending method gradually decreases as SBR decreases, without a competition effect. The reduction of NOx emission under the lowest conditions is more effective than those under other conditions for the two blending methods because of a homogeneous and heterogeneous NOx reduction mechanism.

  • PDF

Dilution methods for combustion aerosol measurement from stationary emission sources: A review (고정 오염원의 연소과정에서 발생하는 먼지를 측정하기 위한 희석방법 연구동향)

  • Woo, Chang Gyu;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo;Kang, Su Ji;Chun, Sung-Nam
    • Particle and aerosol research
    • /
    • v.13 no.4
    • /
    • pp.165-172
    • /
    • 2017
  • For precise particle measurements in combustion environments, various dilution sampling methods were compared. Dilution equipments using dilution tunnels and hot/cold dilution with porous tube dilutors were most frequently used so far. The combination of porous tube dilutor and ejector diluter has relatively small footprint, and it results in lower particle losses compared to other methods. To determine the portion of condensable particulate matter, proper temperature control and flow control is required.

KEPCO-China Huaneng Post-combustion CO2 Capture Pilot Test and Cost Evaluation

  • Lee, Ji Hyun;Kwak, NoSang;Niu, Hongwei;Wang, Jinyi;Wang, Shiqing;Shang, Hang;Gao, Shiwang
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.150-162
    • /
    • 2020
  • The proprietary post-combustion CO2 solvent (KoSol) developed by the Korea Electric Power Research Institute (KEPRI) was applied at the Shanghai Shidongkou CO2 Capture Pilot Plant (China Huaneng CERI, capacity: 120,000 ton CO2/yr) of the China Huaneng Group (CHNG) for performance evaluation. The key results of the pilot test and data on the South Korean/Chinese electric power market were used to calculate the predicted cost of CO2 avoided upon deployment of CO2 capture technology in commercial-scale coal-fired power plants. Sensitivity analysis was performed for the key factors. It is estimated that, in the case of South Korea, the calculated cost of CO2 avoided for an 960 MW ultra-supercritical (USC) coal-fired power plant is approximately 35~44 USD/tCO2 (excluding CO2 transportation and storage costs). Conversely, applying the same technology to a 1,000 MW USC coal-fired power plant in Shanghai, China, results in a slightly lower cost (32~42 USD/tCO2). This study confirms the importance of international cooperation that takes into consideration the geographical locations and the performance of CO2 capture technology for the involved countries in the process of advancing the economic efficiency of large-scale CCS technology aimed to reduce greenhouse gases

A Study on the Effects of Hydrogen Addition and Swirl Intensity in CH4-Air Premixed Swriling Flames (메탄-공기 예혼합 선회화염에서 수소첨가와 선회강도 영향에 관한 연구)

  • KIM, HAN SEOK;CHO, JU HYEONG;KIM, MIN KUK;HWANG, JEONGJAE;LEE, WON JUNE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.593-600
    • /
    • 2019
  • The combustion characteristics of methane/hydrogen pre-mixed flame have been investigated with swirl stabilized flame in a laboratory-scale pre-mixed combustor with constant heat load of 5.81 kW. Hydrogen/methane fuel and air were mixed in a pre-mixer and introduced to the combustor through a burner nozzle with different degrees of swirl angle. The effects of hydrogen addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using particle image velocimetry (PIV), micro-thermocouples, various optical interference filters and gas analyzers to provide information about flow velocity, temperature distributions, and species concentrations of the reaction field. The results show that higher swirl intensity creates more recirculation flow, which reduces the temperature of the reaction zone and, consequently, reduces the thermal NO production. The distributions of flame radicals (OH, CH, C2) are dependent more on the swirl intensity than the percentage of hydrogen added to methane fuel. The NO concentration at the upper part of the reaction zone is increased with an increase in hydrogen content in the fuel mixture because higher combustibility of hydrogen assists to promote faster chemical reaction, enabling more expansion of the gases at the upper part of the reaction zone, which reduces the recirculation flow. The CO concentration in the reaction zone is reduced with an increase in hydrogen content because the amount of C content is relatively decreased.

Spontaneous Combustion of Various Fuels of Carbonization Rank (탄화도별 발전연료의 자연발화 특성 평가)

  • Kim, Jae-Kwan;Park, Seok-Un;Jeong, Jae-Hyeok;Shin, Dong-Ik;Hong, Jun-Seok;Hong, Jin Pyo
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.78-89
    • /
    • 2017
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heated in an oven with air to analyze an self oxidation starting temperature. This tests produce a CPT(Cross Point Temperature), IT(Ignition temperature) and CPS(Cross Point Slope) by calculated as the slope of time taken a rapid exothermic oxidation reaction at CPT base. CPS show a carbonization rank dependence, whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A subbituminous KIDECO coal shows an CPS values of $15.370^{\circ}C/min$ whereas it of pet coke of the highest carbonization rank has $20.950^{\circ}C/min$. The nature of this trend is most likely a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation as well as surface area of fuel char, and constant pressure molar heat.

Effect of AC electric fields on Free Jet Flow in a Laminar (층류 자유제트유동에 인가된 교류전기장의 영향)

  • Kim, Gyeong Taek;Lee, Won June;Cha, Min Suk;Park, Jeong;Chung, Suk Ho;Kwon, Oh Boong;Kim, Min Kuk;Lee, Sang Min;Yun, Jin Han;Keel, Sang In
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.79-81
    • /
    • 2015
  • The experimental study on gasesous laminar free-jet flow was investigated by applying high voltage alternating current (AC) to the nozzle. The jet flows were affedcted significatly by AC electric fields particularly at high voltages for applied frequencies less than 80 Hz, while those were not responded to further increased frequencies. Under certain AC conditions of applied voltgae and frequency, the laminar gaseous fuel stem was broken down at an axial distance and subsequently separtaed into some parts. The velocity fields in jet flows interactiong with applied electric fields were compared with those without having electric field. Interaction of applying electric fields with laminar free jet flow was discussed in detail, and the possible mechanism was also explained.

  • PDF

The Effect of Fuel Composition on Emissions and Combustion of CNG Engine at Partial Load (부분부하에서 연료 조성이 천연가스 엔진의 연소 및 배기에 미치는 영향)

  • Kim, Hyung-Min;Lee, Ki-Hyung;Kim, Bong-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3288-3293
    • /
    • 2007
  • Compressed natural gas has good potential for alternative vehicle fuel due to its economical and clean characteristics. However, the composition of natural gas based on production location is known to affect performance and emissions of CNG engine. Thus, the objective of this paper is to clarify the effect of fuel composition on combustion and emissions of CNG engine. This paper presents combustion characteristics obtained from running a 2.5L, 4-cylinder CNG engine retrofitted IDI diesel engine with engine dynamometer. BSFC, emissions, fuel consumption and combustion pressure were measured under steady state operating conditions especially at partial load for CNG engine. Based on the experimental results, we found that CNG composition affects engine performance, fuel conversion efficiency and burning rate.

  • PDF

Machining Technology of Micro Combustion Nozzle Using a Femtosecond Laser (펨토초 레이저를 이용한 미세 연소노즐 가공 기술)

  • Kim, Kyung-Chan;Kim, Kyung-Ho;Ha, Ji-Soo;Sohn, Ik-Bu;Choi, Hae-Woon;Kim, Tae-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.24-29
    • /
    • 2010
  • The shape of combustion nozzles varies from large diameter to small diameter ones. In the case of small nozzle, nozzle exit can be easily winkled or damaged in machining process. Femtosecond laser is a micro machining technology that is able to drill a small nozzle without damaging the nozzle exit. In this experiment, a small nozzle of combustion was fabricated by using a femtosecond laser. The fabricated nozzle of combustion provided a very small nozzle diameter with clean nozzle exit without wrinkling or collateral damage.