• Title/Summary/Keyword: Clean combustion

Search Result 266, Processing Time 0.02 seconds

Effect of Applied DC Electric Fields in Flame Spread over Polyethylene-Coated Electrical Wire (폴리에틸렌 피복전선 화염의 전파에 영향을 미치는 직류전기장의 인가 효과에 관한 실험적 연구)

  • Jin, Young-Kyu;Kim, Min-Kuk;Park, Jeong;Chung, Suk-Ho;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.321-330
    • /
    • 2011
  • We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ${\pm}7$ kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet.

Feasibility Study of Employing a Catalytic Membrane Reactor for a Pressurized CO2 and Purified H2 Production in a Water Gas Shift Reaction

  • Lim, Hankwon
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.425-432
    • /
    • 2014
  • The effect of two important parameters of a catalytic membrane reactor (CMR), hydrogen selectivity and hydrogen permeance, coupled with an Ar sweep flow and an operating pressure on the performance of a water gas shift reaction in a CMR has been extensively studied using a one-dimensional reactor model and reaction kinetics. As an alternative pre-combustion $CO_2$ capture method, the feasibility of capturing a pressurized and concentrated $CO_2$ in a retentate (a shell side of a CMR) and separating a purified $H_2$ in a permeate (a tube side of a CMR) simultaneously in a CMR was examined and a guideline for a hydrogen permeance, a hydrogen selectivity, an Ar sweep flow rate, and an operating pressure to achieve a simultaneous capture of a concentrate $CO_2$ in a retentate and production of a purified $H_2$ in a permeate is presented. For example, with an operating pressure of 8 atm and Ar sweep gas for rate of $6.7{\times}10^{-4}mols^{-1}$, a concentrated $CO_2$ in a retentate (~90%) and a purified $H_2$ in a permeate (~100%) was simultaneously obtained in a CMR fitted with a membrane with hydrogen permeance of $1{\times}10^{-8}molm^{-2}s^{-1}Pa^{-1}$ and a hydrogen selectivity of 10000.

SCR Reaction Activity and SO2 Durability Enhancement in Accordance with Manufacturing Conditions of the V/TiO2 Catalysts (V/TiO2 촉매의 제조조건에 따른 SCR 반응활성 및 SO2 내구성 증진에 대한 연구)

  • Lee, Seung Hyun;Seo, Jeong Uk;Byeon, Sang Geun;Hong, Sung Chang
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.114-121
    • /
    • 2016
  • In this studies, SCR reaction activity and SO2 durability enhancement study on manufacturing conditions of the V/TiO2 catalyst was carried out for the removal of nitrogen oxides generated in the combustion furnace. The catalysts are characterized by XPS, Raman, H2-TPR and SO2-TPD. When the vanadium was contained of 2 wt%, it showed excellent SO2 durability and catalytic activity. and When the tungsten is added as a promotor, the enhancement of reducing ability at a low temperature and reduction of SO2 adsorption capacity improved the reaction activity and SO2 durability. V/W/TiO2 are prepared by the lower pH of vanadium solution, vanadium was highly dispersed on the surface and inhibited the formation of crystalline V2O5. in addition, it was confirmed that this catalyst can be used as excellent resistance to high concentration of CO in the combustion furnace.

Co-firing Characteristics and Slagging Behavior of Sewage Sludge with Coal and Wood Pellet in a Bubbling Fluidized Bed (기포 유동층 반응기를 이용한 하수 슬러지와 석탄 및 우드 펠렛의 혼소 특성 및 슬래깅 성향 연구)

  • Ahn, Hyungjun;Kim, Donghee;Lee, Youngjae
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.323-331
    • /
    • 2018
  • The results of an experimental investigation on the co-firing characteristics and slagging behavior of dried and hydrothermal carbonization sewage sludge, sub-bituminous coal, and wood pellet in a fluidized bed were presented. Combustion tests were conducted in a lab-scale bubbling fluidized bed system at the uniform fuel-air equivalence ratio, air flow rate, and initial bed temperature to measure bed temperature distribution and combustion gas composition. 4 different fuel blending cases were prepared by mixing sewage sludge fuels with coal and wood pellet with the ratio of 50 : 50 by the heating value. $NO_x$ was mostly NO than $NO_2$ and measured in the range of 400 to 600 ppm in all cases. $SO_2$ was considered to be affected mostly by the sulfur content of the sewage sludge fuels. The cases of hydrothermal carbonization sewage sludge mixture showed slightly less $SO_2$ emission but higher fuel-N conversion than the dried sewage sludge mixing cases. The result of fly ash composition analysis implied that the sewage sludge fuels would increase the possibility of slagging/fouling considering the contents of alkali species, such as Na, K, P. Between the two different sewage sludge fuels, dried sewage sludge fuel was expected to have the more severe impact on slagging/fouling behavior than hydrothermal carbonization sewage sludge fuel.

Ignition Characteristics of Petroleum-based and Bio Aviation Fuel According to the Change of Temperature and Pressure (온도와 압력의 변화에 따른 석유계 및 바이오항공유의 점화특성 분석)

  • Kang, Saetbyeol
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.238-244
    • /
    • 2019
  • In this study, the ignition characteristics of petroleum-based aviation fuel (Jet A-1), bio aviation fuel (Bio-6308), and blended aviation fuel (50:50, v:v) were analyzed in accordance with change of temperature and pressure. The ignition delay time of each aviation fuel was measured by combustion research unit (CRU) and the compositions of the fuels were analyzed by GC/MS and GC/FID for qualitative and quantitative results. From the results, it was confirmed that the ignition delay times of all aviation fuels were shortened with increasing temperature and pressure. In particular, the effect of temperature was larger than the effect of pressure. Also, the ignition delay time of Jet A-1 was the longest at all measurement conditions, and it was judged that this result is because of the structurally stable characteristics of the benzyl radical generated during the oxidation reaction of the aromatic compound (about 22.48%) in Jet A-1. Also, it was confirmed that Jet A-1 had no section where the degree of shortening of ignition delay time was decreased by increasing temperature, which was because the benzyl radical inhibits the response that can affect the negative temperature coefficient (NTC). The ignition characteristics of blended aviation fuel (50:50, v:v) showed a similar tendency to those of Jet A-1, rather than to those of Bio-6308, so that the blended aviation fuel (50:50, v:v) can be applied to the existing system without any change.

A Review of Pilot Plant Studies on Elemental Mercury Oxidation Using Catalytic DeNOxing Systems in MW-Scale Coal Combustion Flue Gases (MW급 석탄연소 배가스에서 탈질촉매시스템을 이용한 원소수은 산화 실증사례)

  • Kim, Moon Hyeon;Nguyen, Thi Phuong Thao
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.207-216
    • /
    • 2021
  • Major anthropogenic emissions of elemental mercury (Hg0) occur from coal-fired power plants, and the emissions can be controlled successfully using NH3-SCR (selective catalytic reduction) systems with catalysts. Although the catalysts can easily convert the gaseous mercury into Hg2+ species, the reactions are greatly dependent on the flue gas constituents and SCR conditions. Numerous deNOxing catalysts have been proposed for considerable reduction in power plant mercury emissions; however, there are few studies to date of elemental mercury oxidation using SCR processes with MW- and full-scale coal-fired boilers. In these flue gas streams, the chemistry of the mercury oxidation is very complicated. Coal types, deNOxing catalytic systems, and operating conditions are critical in determining the extent of the oxidation. Of these parameters, halogen element levels in coals may become a key vehicle for obtaining better Hg0 oxidation efficiency. Such halogens are Cl, Br, and F and the former one is predominant in coals. The chlorine exists in the form of salts and is transformed to gaseous HCl with a trace amount of Cl2 during the course of coal combustion. The HCl acts as a very powerful promoter for high catalytic Hg0 oxidation; however, this can be strongly dependent on the type of coal because of a wide variation in the chlorine contents of coal.

A Mathematical Programming Method for Minimization of Carbon Debt of Bioenergy (바이오에너지의 탄소부채 최소화를 위한 수학적 계획법)

  • Choi, Soo Hyoung
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.269-274
    • /
    • 2021
  • Bioenergy is generally considered to be one of the options for pursuing carbon neutrality. However, for a period of time, combustion of harvested plant biomass inevitably causes more carbon dioxide in the atmosphere than combustion of fossil fuels. This paper proposes a method that predicts and minimizes the total amount and payback period of this carbon debt. As a case study, a carbon cycle impact assessment was performed for immediate switching of the currently used fossil fuels to biomass. This work points out a fundamental vulnerability in the concept of carbon neutrality. As an action plan for the sustainability of bioenergy, formulas for afforestation proportional to the decrease in the forest area and surplus harvest proportional to the increase in the forest mass are proposed. The results of optimization indicate that the carbon debt payback period is about 70 years, and the carbon dioxide in the atmosphere increases by more than 50% at a maximum and 3% at a steady state. These are theoretically predicted best results, which are expected to be worse in reality. Therefore, biomass is not truly carbon neutral, and it is inappropriate as an energy source alternative to fossil fuels. The method proposed in this work is expected to be able to contribute to the approach to carbon neutrality by minimizing present and future carbon debt of the bioenergy that is already in use.

Experimental Study of Transition to Secondary Acoustic Instability at Downward-Propagating Premixed Flame in a Tube (튜브 내 하향 전파하는 예혼합 화염의 이차 열음향 불안정성 천이에 관한 실험적 연구)

  • Park, Juwon;Kim, Daehae;Park, Dae Geun;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.915-921
    • /
    • 2020
  • Thermoacoustic instability caused by air conditioning in a combustion chamber has emerged as a problem that must be solved to establish a stable combustion system. Thermoacoustic instability is largely divided into primary and secondary acoustic instability. In this study, an experimental study of the effects of heat losses was conducted to investigate the mechanism of secondary acoustic instability. To generate the secondary acoustic instability, a quarter-wavelength resonator with one open end and one closed end was used, and the inside of the resonator was filled with premixed gases. Subsequently, secondary acoustic instability with downward-propagating flames could be realized via thermal expansion on the burnt side. To control heat losses qualitatively, an additional co-axial tube was installed in the resonator with air or nitrogen supply. Therefore, additional diffusion flames can be formed at the top of the resonator depending on the injection of the oxidizer into the co-axial tube when rich premixed flames are used. Consequently, secondary acoustic instability could not be achieved by increasing heat losses to the ambient when the additional diffusion flame was not formed, and the opposite result was obtained with the additional diffusion flame.

Recent Development of Thermo-chemical Conversion Processes with Fluidized Bed Technologies (유동층 공정을 이용한 열화학적 전환 공정의 최신 개발 동향)

  • Hyun Jun Park;Seung Seok Oh;Olusola Nafiu Olanrewaju;Jester Lih Jie Ling;Chul Seung Jeong;Han Saem Park;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.8-18
    • /
    • 2023
  • Increasing of energy demand due to the rapid growth of global population and the development of world economy has inevitably resulted in the continuously increase of fossil fuel usage in the world. However, highly dependence on fossil fuels has necessarily brought about critical environmental issues and challenges such as severe air pollutions and rapid global warming. In order to settle these environmental and energy problems, clean energy generations in the conventional combustion processes have widely adapted in the world. In particular, novel thermochemical conversion processes such as pyrolysis and gasification have rapidly been applied for generating clean energy. Fluidized bed technologies having advantages such as various fuel use, easy continuous operation, high heat and material transfer, isothermal operation, and lower operation temperature are widely adopted and used because they are suitable for thermochemical energy conversion. The latest research trends and important findings in the thermo-chemical conversion process with fluidized bed technologies are summarized in this review. Also, the need for research such as layered materials and substances to reduce fine dust (biomass, natural resource waste, etc.) was suggested. Through this, it is intended to increase interest and understanding in fluidized bed technology and to present directions for solving future challenges in fluidized bed process technology development.

A Numerical Study on the Efficiency of an Industrial Furnace for Oxygen Combustion Conditions (산소부화용 공업로의 운전조건이 열효율에 미치는 영향)

  • Kim, Kang-Min;Lee, Yeon-Kyung;Ahn, Seok-Gi;Kim, Gyu-Bo;Yoo, In;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.82-88
    • /
    • 2015
  • After a reheating furnace installation, the modification of the size and the heat capacity is very difficult. Therefore, the development of design package tool is required for the computation on the correct specifications before the design and the installation. Prior to development of the design tool, a module that calculates the amount of heat loss of each part according to the specifications for determining the thermal efficiency of a continuous heating furnace was developed and applied to the oxy-fuel industrial furnace. Through this, the effects of fuel type, oxygen fraction and recirculation on the efficiency of the furnace of which the output is 110Ton/hour were analyzed. In oxy-fuel combustion condition, the efficiency was 15% higher than air combustion conditions. With the using COG(Coke Oven Gas) instead of LNG, the efficiency was slightly increased. In the air combustion condition, the efficiency was increased about 33% with the preheated air. But, in oxy-fuel condition, the amount of exhaust gas was reduced, so the efficiency was increased about 7%.