• 제목/요약/키워드: Clay

Search Result 4,506, Processing Time 0.035 seconds

Research on the Methods and Proper Provisions for Rotational Irrigation (윤환관개방법과 적정시설 연구)

  • 유한열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2191-2205
    • /
    • 1971
  • In this research, Nong-rim No. 6 was adopted as a test variety of rice. Rice seedlings were transplanted on June 14, 1970. Roots were settled into soil on June 20 and a total number of days irrigated of $21cm{\times}21cm$ and an area of $9.9m^2$ for a test plot were accepted, planting 70 stumps of rice in a test plot. The soil in test plots are classified by soil test as oam, and its chemical contents are as shown in Table 3. Irrigation water was secured by pumping from the Sudun stream that originates at the Suho reservoir. Accordingly, the qualities of irrigation. water are considered to be the same as those of water stored in the Suho reservoir. There were 54 days of intermittent rainfalls in total during the whole 110-day period of irrigation. As a result, it is likely that the growth of rice plants was influenced by rainfall at a comparatively great degree. In order to measure the amounts of water consumption, infiltrometers, measuring devices for the decreases of water depths and lycimeters were provided. As a result of measurements, an average daily rate of infiltration was observed to be 14mm/day. It is expected from this research that the effect of increased yield will be secured by supplying optimum amounts of water for irrigation on proper times, and that the amounts of water consumption for irrigation can be saved by applying suitable irrigation methods. The test results obtained are summarized as follows: 1. Yields produced in the test plots of continuous irrigation are lower than those in the test plots of rotational irrigation, i.e., yields produced at the test plots irrigatied once in a period of 8 days are higher by 27% in average than those produced at test plots of continuous irrigation. 2. The amounts of irrigation water for test plots, which have a clay layer of 9cm in thickness and vynil diaphragm without holes, are saved by about 52% in comparison with ordinary test plots. 3. Ears are sprouted 5 days earlier at continuous irrigation plots as compared with other test plots. 4. It seems that there are growing stages of rice plants such as those of forming and sprouting of ears, in which the amounts of irrigation water are consumed more in comparison with the other stages. Therefore, it may be possible to increase of decrease the amount of irrigation water, according to the growing stage of rice plant, so as to save irrigation water.

  • PDF

Evaluation of the Parameters of Soil Potassium Supplying Power for Predicting Yield Response, K2O Uptake and Optiumum K2O Application Levels in Paddy Soils (수도(水稻)의 가리시비반응(加里施肥反応)과 시비량추정(施肥量推定)을 위한 가리공급력(加里供給力) 측정방법(測定方法) 평가(評価) -I. Q/I 관계(関係)에 의(依)한 가리(加里) 공급력측정(供給力測定)과 시비반응(施肥反応))

  • Park, Yang-Ho;An, Soo-Bong;Park, Chon-Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.42-49
    • /
    • 1983
  • In order to find out the possibility of predicting fertilizer K requirement from the K supplying capacity of soil, the relative K activity ratio, Kas/kai, the potential buffering capacity of $K^+$ ($PBC^k$ ; the liner regression coefficient) and its activity ratio ($AR^k_o$ ; $^{k+}$/${\sqrt{Ca^{+2}+Mg^{+2}}}$ in mol/l) at ${\delta}K$ = O, in the Q/I relationships of Beckett(1964), were determined for the soils before flooding and the samples taken at heading stage of transplanted rice in pot experiment. These parameters assumed as the K supplying capacity of soils were subjected for the investigation through correlation stady between themselves and other factors such as grain yield or the amounts of $K_2O$ uptake by rice plant at harvest. The results may be summarized as follows; 1. The potassium supplying power of the flooded soil was considered to be ruled by the amounts of exchangeable K before flooding, since there was little change in exchangeable K concentration from no-exchangeable K during the incubation periods of 67 days. 2. The $PBC^k$ values, in soils before flooding were 0.027, 0.014 and 0.009, where as the $AR^k_o{\times}10^{-3}$ values were 9.1, 7.6, and 15.4, respectively, in clay, loamy and sandy loam soils. 3. The $PBC^k$ values, determined in the soil samples taken at heading stage, varied little compared with the values of orignal soil, regardless of those different fertilizer treatments and textures, showing the possibility of using them as a factor for the improvement of soil to increase the efficiency of fertilizer K. 4. The significant yield responses to potassium fertilizer application were observed wherever the $AR^k_o$ values in soil at heading stage drop down to the original $AR^k_o$ values, regardless of any levels of fertilizer application. 5. The higher correlations between the gain yield or the amounts of $K_2O$ uptake and by the use of both soil factors of $PBC^k$ and $AR^k_o$ at heading stage were observed compared with the use of any single factor. 6. The Kas/Kai value in the soil, estimated prior to the experiment, had high possitive correlation with the $AR^k_o$ determined in the soil at heading stage and could be used as a soil factor for predicting potassium fertilizer requirement.

  • PDF

Studies on the Interpretative Classification of Paddy Soils in Korea I : A Study on the Classification of Sandy Paddy Soils (우리나라 답토양(畓土壌)의 실용적분류(実用的分類)에 관(関)한 연구(硏究) -제1보(第一報) 사질답(砂質畓) 분류(分類)에 관(関)하여)

  • Jung, Yeun-Tae;Yang, Euy-Seog;Park, Rae-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.2
    • /
    • pp.128-140
    • /
    • 1982
  • The distribution and practical classification of sandy paddy soils, which have the most extensive acreage among low productive paddy soils in Korea and have distinctive improvement effects, were studied to propose a tentative new classification system of sandy textured paddy soils as a means of improving the "Paddy Soil Type Classification" scheme used. The results are summarized as follows; 1. The potential productivity of sandy textured paddy soils was about 86% of normal paddy and the coefficient of variation was relatively high indicating that the properties of soils included were not sufficiently homogeneous. 2. As the poorly drained and halomorphic (> 16 mmhos/cm of E.C. at $25^{\circ}C$) sandy soils are not included in the "Sandy Soil" type according to the criteria of "Soil Type Classification", the recommendation of "adding clay earth" become complicated, and the soil type have to change when the salts washed away or due to ground water table fluctuations. 3. Coarse textured soils were entirely included in the "Sandy Soils" in the tentative criteria of sandy soil classification proposed, and the sandy soils were subdivided into 4 subtypes that is "Oxidized leaching sandy paddy", Red-ox. intergrading sandy paddy", "Reduced accumulating sandy paddy" and "Reduced halomorphic sandy paddy". The system of sandy soil classification proposed were consisted of following categories; Type (Sandy paddy)-Sub-type (4)-Texture family (5)-Soil series (48). 4. The variation of productivities according to the proposed scheme was more homogenized than that of the present device. 5. The total extent of sandy paddy soils was 409, 902 ha (32.3% of total paddy) according to the present classification system, but the extent reached 492,983 ha (38.9%) by the proposed system. The provinces of Gyeong-gi (88.923ha), Jeon-bug (69.717 ha), Gyeong-bug (55.390 ha) have extensive acreage of sandy paddy soils, and the provinces that had high ratio of sandy paddy soils were Gang-weon (58.9%), Gyeong-gi (50.5%), Chung-bug (48.5%), Jeon-bug (41.0%) etc. The ratio was increased by the proposed scheme, e.g. 71.4% in the case of Gang-weon prov. 6. According to the suitability group of paddy soils, the sandy soils mostly belong to 3 class (69.1%) and 4 class (29.2%). Coarse loamy textural family (59.2%) and coarse silty (16.1 %) soils were dominantly distributed. 7. The "Red-ox. intergrading subtype" of sandy paddy pertinent to 49.6% (245,012 ha) while the "Oxidized leaching sub-type" reaches to 33.5% (64,890 ha) and the remained 16.9% (83,081ha) belong to "Reduced accumulating sub-type (14.0%) and "Reduced halomorphic sub-type (2.9%)" according to the proposed scheme.

  • PDF

Mineralogy and Biogeochemistry of Intertidal Flat Sediment, Muan, Chonnam, Korea (전남 무안 갯벌 퇴적물에 관한 광물학적 및 생지화학적 연구)

  • Park, Byung-No;Lee, Je-Hyun;Oh, Jong-Min;Lee, Seuug-Hee;Han, Ji-Hee;Kim, Yu-Mi;Seo, Hyun-Hee;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.47-60
    • /
    • 2007
  • While sedimentological researches on Western coastal tidal flats of Korea have been much pelformed previously, mineralogical and biogeochemical studies are beginning to be studied. The objectives of this study were to investigate mineralogical characteritics of the inter-tidal flat sediments and to explore phase transformation of iron(oxyhydr)oxides and biomineralization by metal-reducing bacteria enriched from the inter-tidal flat sediments from Muan, Jeollanam-do, Korea. Inter-tidal flat sediment samples were collected in Chungkye-myun and Haeje-myun, Muan-gun, Jeollanam-do. Particle size analyses were performed using the pipette method and sedimentation method. The separates including sand, silt and clay fractions were examined by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and X-ray diffiaction (XRD). After enriching the metal-.educing bacteria from the into,-tidal flat sediments, the bacteria were used to study phase transformation of the synthesized iron (oxyhydr)oxides and iron biomineralization using lactate or glucose as the electron donors and Fe(III)-containing iron oxides as the electron accepters. Mineralogical studies showed that the sediments of tidal flats in Chung]rye-myun and Haeje-myun consist of quartz, plagioclase, microcline, biotite, kaolinite and illite. Biogeochemical researches showed that the metal-reducing bacteria enriched from the inter-tidal flat sediments reduced reddish brown akaganeite and mineralized nanometer-sized black magnetite. The bacteria also reduced the reddish brown ferrihydrite into black amorphous phases and reduced the yellowish goethite into greenish with formation of nm-sized phases. These results indicate that microbial Fe(III) reduction may play one of important roles in iron and carbon biogeochemistry as well as iron biomineralization in subsurface environments.

The Spatio-temporal Distribution of Organic Matter on the Surface Sediment and Its Origin in Gamak Bay, Korea (가막만 표층퇴적물중 유기물량의 시.공간적 분포 특성)

  • Noh Il-Hyeon;Yoon Yang-Ho;Kim Dae-Il;Park Jong-Sick
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • A field survey on the spatio-temporal distribution characteristics and origins of organic matter in surface sediments was carried out monthly at six stations in Gamak Bay, South Korea from April 2000 to March 2002. The range of ignition loss(IL) was $4.6{\sim}11.6%(7.1{\pm}1.6%)$, while chemical oxygen demand(CODs) ranged from $12.25{\sim}99.26mgO_2/g-dry(30.98{\pm}19.09mgO_2/g-dry)$, acid volatile sulfide(AVS) went from no detection(ND)${\sim}10.29mgS/g-dry(1.02{\pm}0.58mgS/g-dry)$, and phaeopigment was $6.84{\sim}116.18{\mu}g/g-dry(23.72{\pm}21.16{\mu}g/g-dry)$. The ranges of particulate organic carbon(POC) and particulate organic nitrogen(PON) were $5.45{\sim}23.24 mgC/g-dty(10.34{\pm}4.40C\;mgC/g-dry)$ and $0.71{\sim}2.99mgN/g-dry(1.37{\pm}0.58mgN/g-dry)$, respectively. Water content was in the range of $43.1{\sim}77.6%(55.8{\pm}5.6%)$, and mud content(silt+clay) was higher than 95% at all stations. The spatial distribution of organic matter in surface sediments was greatly divided between the northwestern, central and eastern areas, southern entrance area from the distribution characteristic of their organic matters. The concentrations of almost all items were greater at the northwestern and southern entrance area than at the other areas in Gamak Bay. In particular, sedimentary pollution was very serious at the northwestern area, because the area had an excessive supply of organic matter due to aquaculture activity and the inflow of sewage from the land. These materials stayed longer because of the topographical characteristics of such as basin and the anoxic conditions in the bottom seawater environment caused by thermocline in the summer. The tendency of temporal change was most prominently in the period of high-water temperatures than low-water ones at the northwestern and southern entrance areas. On the other hand, the central and eastern areas did not show a regular trend for changing the concentrations of each item but mainly showed a higher tendency during the low-water temperatures. This was observed for all but AVS concentrations which were higher during the period of high-water temperature at all stations. Especially, the central and eastern areas showed a large temporal increase of AVS concentration during those periods of high-water temperature where the concentration of CODs was in excess of $20mgO_2/g-dry$. The results show that the organic matters in surface sediments in Gamak Bay actually originated from autochthonous organic matters with eight or less in average C/N ratio including the organic matters generated by the use of ocean, rather than terrigenous organic matters. However, the formation of autochthonous organic matter was mainly derived from detritus than living phytoplankton, indicated the results of the POC/phaeopigment ratio. In addition, the CODs/IL ratio results demonstrate that the detritus was the product of artificial activities such as dregs feeding and fecal pellets of farm organisms caused by aquaculture activities rather than the dynamic of natural ocean activities.

  • PDF

Studies on the Estimation of K2O Requirement for rice through the Chemical Test Data of Paddy Top Soil (화학분석(化學分析)을 통(通)한 수도(水稻)의 가리적량(加里適量) 추정(推定)에 관한 연구(硏究))

  • Kim, Moon Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.61-100
    • /
    • 1975
  • This study has been made to find out the possibilty of successfully using the following $K_2O$ recommended equation $K_2O\;kg/10a=(Ko/\sqrt{Ca+Mg}-Ks/\sqrt{Ca+Mg})sqrt{Ca+Mg}.\;47.\;B\;D$. where $Ko/sqrt{Ca+Mg}=0.03518+0.0007658\;Sio_2/O.M$. $K_Ssqrt{Ca+Mg}$=Exchangeable K me/100g/$\sqrt{Total\;soluble(Ca+Mg)me/100g\;in\;Soil}$ B. D. =Bulk density of top soil, when the dose of Nitrogen for rice is estimated from the following equation: $N\;kg/10a=(4.2+0.096\;SiO_2/O.M).F$ where $F=0.907+0.263x-0.013x^2$ $SiO_2/O.M=(available\;SiO_2=ppm)/(organic\;matter\;%)$in soil For this. two field experiments. one in sandy and the other in clay paddy soil. have been conducted using 3 levels of wollastonite (0, 500, 100kg/10a) as main treatments; 3 levels of $K_2O$ application were used as sub-plots. These were as follows : (1) 8kg of $K_2O$/10a regardless of the K activity-$K/\sqrt{Ca+Mg}$; (2) kg of $K_2O$/10a estimated from the above equation. and (3) same as (2) above plus additional 30% of $K_2O$. The dose of N kg/ 10a was determined from the above equation based on the value of $SiO_2$/O.M. ratio in each treatment. There were three replications. The leading variety of rice in Chung Chong Nam Do area. Akibare (introduced from Japan) was used. The data obtained. through soil and plant analysis and growth and yield observations. have been throughly examined to attain the following summarized conclusions. 1. The nitrogen dose. estimated from the above equation. was in excess for optimum growth of the rice variety Akibare; indicating the necessity of modification onthe value of "F" or the constants in the equation. The concept of using $SiO_2$/O.M. in the equation was shown to be applicable. 2. The dose of potash. estimated from the respective equation given above. also was in excess of the rice requirements indicating the necessity of minor change in the estimation of $Ko/\sqrt{Ca+Mg}$ value and some great modification in the calculation of $Ks/\sqrt{Ca+Mg}$ value for the equation; however the concept of using $K/\sqrt{Ca+Mg}$ as a basis of $K_2O$ recommendation was shown to be quite reasonable. 3. It was found. from the correlation study using the data of paddy yield and amount of $K_2O$ absorbed by rice plants that the substitution of the value of $Ks/\sqrt{Ca+Mg}$ in the equation for the vaule $Ks/\sqrt{Ca+Mg}=0.037+0.78K\;me/100g$ soil was much more applicable than using the value calculated from the data of soil and wollastonite analysis.

  • PDF

Nature of Suppressiveness and Conduciveness of Some plant pathogens in Soils (토양내(土壤內) 식물(植物) 병원균(病原菌)의 발병억제(發病抑制) 및 유발성질(誘發性質))

  • Shim, Jae-Ouk;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.18 no.3
    • /
    • pp.164-177
    • /
    • 1990
  • This study was carried out to obtain some useful data for increasing an effective ginseng production. There was a direct relationship (r=0.2645) between spore germination of Fusarium solani and soil pH, and (r=0.315) between Cylindrocarpon destructans and soil pH. On the other hand, there was a direct relationship (r=0.19) between relative hyphal growth of Rhizoctonia solani and soil pH. There was a direct relationship (r=0.21) between number of total bacteria and F. solani, (r=0.37) between actinomycetes and F. solani and (r=0.20) between celluloytic bacteria and F. solani. However, there was an inverse relationship (r=-0.20) between number of total fungi and F. solani. There was a direct relationship (r=0.24) between number of actinomycetes and R. solani. Each ginseng pathogen-suppressive soil screened was 40 in F. solani, 20 in C. destructans and 9 soil samples in R. solani among 146 soil samples, respectively. The mean contents of K, Ca and Mg were fairly lower in each ginseng pathogen-suppressive soil than conducive soil, whereas Na were somewhat lower. The mean contents of organic matter were over 2 times higher in each ginseng pathogen-suppressive soil than conducive soil. The mean contents of phosphate were fairly lower in F. solani and R. solani-suppressive soil than conducive soil and, on the other hand, were somewhat higher in C. destructans-suppressive soil than conducive soil. The mean soil pH was somewhat lower in each ginseng pathogen-suppressive soil than conducive soil. The mean contents of sand were about 2 times higher in each ginseng pathogen­suppressive soil than conducive soil, whereas silt and clay were somewhat lower. The microbial numbers of total bacteria, total fungi and celluloytic fungi were higher in F. solani-suppressive soil than conducive soil, whereas actinomycetes and celluloytic bacteria were lower. Each microbial number of total bacteria or total fungi indicated a significant difference (p=0.05) between F. solani­suppressive and conducive soil, and the microbial number of actinomycetes was a highly significant difference (p=0.01) between F. solani-suppressive and conducive soil. The microbial numbers of total bacteria, total fungi, actinomycetes and celluloytic fungi were higher in C. destructans-suppressive soil than conducive soil, whereas celluloytic bacteria were about 2 times lower. On the other hand, the microbial numbers of total fungi were higher in R. solani-suppressive soil than conducive soil, whereas total bacteria, actinomycetes, celluloytic bacteria and celluloytic fungi were lower. Fourteen of 16 F. solani-suppressive soils tested were suppressive to ginseng root rot, whereas fifteen of 16 C. destructans-suppressive soils were suppressive. Ginseng root rots of ginseng disease-suppressive soils were in the range of 1.0-17.4% in F. solani-suppressive soil and 0.2-20.4% in C. destructans-suppressive soil, respectively.

  • PDF

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Environmental Interpretation on soil mass movement spot and disaster dangerous site for precautionary measures -in Peong Chang Area- (산사태발생지(山沙汰發生地)와 피해위험지(被害危險地)의 환경학적(環境學的) 해석(解析)과 예방대책(豫防對策) -평창지구(平昌地區)를 중심(中心)으로-)

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.45 no.1
    • /
    • pp.11-25
    • /
    • 1979
  • There was much mass movement at many different mountain side of Peong Chang area in Kwangwon province by the influence of heavy rainfall through August/4 5, 1979. This study have done with the fact observed through the field survey and the information of the former researchers. The results are as follows; 1. Heavy rainfall area with more than 200mm per day and more than 60mm per hour as maximum rainfall during past 6 years, are distributed in the western side of the connecting line through Hoeng Seong, Weonju, Yeongdong, Muju, Namweon and Suncheon, and of the southern sea side of KeongsangNam-do. The heavy rain fan reason in the above area seems to be influenced by the mouktam range and moving direction of depression. 2. Peak point of heavy rainfall distribution always happen during the night time and seems to cause directly mass movement and serious damage. 3. Soil mass movement in Peongchang break out from the course sandy loam soil of granite group and the clay soil of lime stone and shale. Earth have moved along the surface of both bedrock or also the hardpan in case of the lime stone area. 4. Infiltration seems to be rapid on the both bedrock soil, the former is by the soil texture and the latter is by the crumb structure, high humus content and dense root system in surface soil. 5. Topographic pattern of mass movement spot is mostly the concave slope at the valley head or at the upper part of middle slope which run-off can easily come together from the surrounding slope. Soil profile of mass movement spot has wet soil in the lime stone area and loose or deep soil in the granite area. 6. Dominant slope degree of the soil mass movement site has steep slope, mostly, more than 25 degree and slope position that start mass movement is mostly in the range of the middle slope line to ridge line. 7. Vegetation status of soil mass movement area are mostly fire field agriculture area, it's abandoned grass land, young plantation made on the fire field poor forest of the erosion control site and non forest land composed mainly grass and shrubs. Very rare earth sliding can be found in the big tree stands but mostly from the thin soil site on the un-weatherd bed rock. 8. Dangerous condition of soil mass movement and land sliding seems to be estimated by the several environmental factors, namely, vegetation cover, slope degree, slope shape and position, bed rock and soil profile characteristics etc. 9. House break down are mostly happen on the following site, namely, colluvial cone and fan, talus, foot area of concave slope and small terrace or colluvial soil between valley and at the small river side Dangerous house from mass movement could be interpreted by the aerial photo with reference of the surrounding site condition of house and village in the mountain area 10. As a counter plan for the prevention of mass movement damage the technics of it's risk diagnosis and the field survey should be done, and the mass movement control of prevention should be started with the goverment support as soon as possible. The precautionary measures of house and village protection from mass movement damage should be made and executed and considered the protecting forest making around the house and village. 11. Dangerous or safety of house and village from mass movement and flood damage will be indentified and informed to the village people of mountain area through the forest extension work. 12. Clear cutting activity on the steep granite site, fire field making on the steep slope, house or village construction on the dangerous site and fuel collection in the eroded forest or the steep forest land should be surely prohibited When making the management plan the mass movement, soil erosion and flood problem will be concidered and also included the prevention method of disaster.

  • PDF

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF