• 제목/요약/키워드: Classifier System

검색결과 762건 처리시간 0.033초

Speed Sign Recognition Using Sequential Cascade AdaBoost Classifier with Color Features

  • Kwon, Oh-Seol
    • Journal of Multimedia Information System
    • /
    • 제6권4호
    • /
    • pp.185-190
    • /
    • 2019
  • For future autonomous cars, it is necessary to recognize various surrounding environments such as lanes, traffic lights, and vehicles. This paper presents a method of speed sign recognition from a single image in automatic driving assistance systems. The detection step with the proposed method emphasizes the color attributes in modified YUV color space because speed sign area is affected by color. The proposed method is further improved by extracting the digits from the highlighted circle region. A sequential cascade AdaBoost classifier is then used in the recognition step for real-time processing. Experimental results show the performance of the proposed algorithm is superior to that of conventional algorithms for various speed signs and real-world conditions.

활어 개체어의 광대역 음향산란신호에 대한 시간-주파수 이미지의 어파인 변환과 주성분 분석을 이용한 어종식별 (Identification of Fish Species using Affine Transformation and Principal Component Analysis of Time-Frequency Images of Broadband Acoustic Echoes from Individual Live Fish)

  • 이대재
    • 한국수산과학회지
    • /
    • 제50권2호
    • /
    • pp.195-206
    • /
    • 2017
  • Joint time-frequency images of the broadband echo signals of six fish species were obtained using the smoothed pseudo-Wigner-Ville distribution in controlled environments. Affine transformation and principal component analysis were used to obtain eigenimages that provided species-specific acoustic features for each of the six fish species. The echo images of an unknown fish species, acquired in real time and in a fully automated fashion, were identified by finding the smallest Euclidean or Mahalanobis distance between each combination of weight matrices of the test image of the fish species to be identified and of the eigenimage classes of each of six fish species in the training set. The experimental results showed that the Mahalanobis classifier performed better than the Euclidean classifier in identifying both single- and mixed-species groups of all species assessed.

Adaboost 학습을 이용한 얼굴 인식 (Face Recognition Using Adaboost Loaming)

  • 정종률;최병욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2016-2019
    • /
    • 2003
  • In this paper, we take some features for face recognition out of face image, using a simple type of templates. We use the extracted features to do Adaboost learning for face recognition. Using a carefully-chosen feature among these features, we can make a weak face classifier for face recognition. And doing Adaboost learning on and on with those chosen several weak classifiers, we can get a strong face classifier. By using Adaboost Loaming, we can choose particular features which is not easily subject to changes in illumination and facial expression about several images of one person, and construct face recognition system. Therefore, the face classifier bulit like the above way has robustness in both facial expression and illumination variation, and it finally gives capability of recognizing face fast due to the simple feature.

  • PDF

Freehand Forgery Detection Using Directional Density and Fuzzy Classifier

  • Han, Soowhan;Woo, Youngwoon
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 추계학술발표논문집
    • /
    • pp.250-255
    • /
    • 2000
  • This paper is concerning off-line signature verification using a density function which is obtained by convolving the signature image with twelve-directional 5$\times$5 gradient masks and the weighted fuzzy mean classifier. The twelve-directional density function based on Nevatia-Babu template gradient is related to the overall shape of a signature image and thus, utilized as a feature set. The weighted fuzzy mean classifier with the reference feature vectors extracted from only genuine signature samples is evaluated for the verification of freehand forgeries. The experimental results show that the proposed system can classify a signature whether genuine or forged with more than 98% overall accuracy even without any knowledge of vaned freehand forgeries.

  • PDF

Lightweight image classifier for CIFAR-10

  • Sharma, Akshay Kumar;Rana, Amrita;Kim, Kyung Ki
    • 센서학회지
    • /
    • 제30권5호
    • /
    • pp.286-289
    • /
    • 2021
  • Image classification is one of the fundamental applications of computer vision. It enables a system to identify an object in an image. Recently, image classification applications have broadened their scope from computer applications to edge devices. The convolutional neural network (CNN) is the main class of deep learning neural networks that are widely used in computer tasks, and it delivers high accuracy. However, CNN algorithms use a large number of parameters and incur high computational costs, which hinder their implementation in edge hardware devices. To address this issue, this paper proposes a lightweight image classifier that provides good accuracy while using fewer parameters. The proposed image classifier diverts the input into three paths and utilizes different scales of receptive fields to extract more feature maps while using fewer parameters at the time of training. This results in the development of a model of small size. This model is tested on the CIFAR-10 dataset and achieves an accuracy of 90% using .26M parameters. This is better than the state-of-the-art models, and it can be implemented on edge devices.

Music Genre Classification Based on Timbral Texture and Rhythmic Content Features

  • Baniya, Babu Kaji;Ghimire, Deepak;Lee, Joonwhon
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.204-207
    • /
    • 2013
  • Music genre classification is an essential component for music information retrieval system. There are two important components to be considered for better genre classification, which are audio feature extraction and classifier. This paper incorporates two different kinds of features for genre classification, timbral texture and rhythmic content features. Timbral texture contains several spectral and Mel-frequency Cepstral Coefficient (MFCC) features. Before choosing a timbral feature we explore which feature contributes less significant role on genre discrimination. This facilitates the reduction of feature dimension. For the timbral features up to the 4-th order central moments and the covariance components of mutual features are considered to improve the overall classification result. For the rhythmic content the features extracted from beat histogram are selected. In the paper Extreme Learning Machine (ELM) with bagging is used as classifier for classifying the genres. Based on the proposed feature sets and classifier, experiment is performed with well-known datasets: GTZAN databases with ten different music genres, respectively. The proposed method acquires the better classification accuracy than the existing approaches.

An Improved Intrusion Detection System for SDN using Multi-Stage Optimized Deep Forest Classifier

  • Saritha Reddy, A;Ramasubba Reddy, B;Suresh Babu, A
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.374-386
    • /
    • 2022
  • Nowadays, research in deep learning leveraged automated computing and networking paradigm evidenced rapid contributions in terms of Software Defined Networking (SDN) and its diverse security applications while handling cybercrimes. SDN plays a vital role in sniffing information related to network usage in large-scale data centers that simultaneously support an improved algorithm design for automated detection of network intrusions. Despite its security protocols, SDN is considered contradictory towards DDoS attacks (Distributed Denial of Service). Several research studies developed machine learning-based network intrusion detection systems addressing detection and mitigation of DDoS attacks in SDN-based networks due to dynamic changes in various features and behavioral patterns. Addressing this problem, this research study focuses on effectively designing a multistage hybrid and intelligent deep learning classifier based on modified deep forest classification to detect DDoS attacks in SDN networks. Experimental results depict that the performance accuracy of the proposed classifier is improved when evaluated with standard parameters.

IoT Enabled Intelligent System for Radiation Monitoring and Warning Approach using Machine Learning

  • Muhammad Saifullah ;Imran Sarwar Bajwa;Muhammad Ibrahim;Mutyyba Asgher
    • International Journal of Computer Science & Network Security
    • /
    • 제23권5호
    • /
    • pp.135-147
    • /
    • 2023
  • Internet of things has revolutionaries every field of life due to the use of artificial intelligence within Machine Learning. It is successfully being used for the study of Radiation monitoring, prediction of Ultraviolet and Electromagnetic rays. However, there is no particular system available that can monitor and detect waves. Therefore, the present study designed in which IOT enables intelligence system based on machine learning was developed for the prediction of the radiation and their effects of human beings. Moreover, a sensor based system was installed in order to detect harmful radiation present in the environment and this system has the ability to alert the humans within the range of danger zone with a buzz, so that humans can move to a safer place. Along with this automatic sensor system; a self-created dataset was also created in which sensor values were recorded. Furthermore, in order to study the outcomes of the effect of these rays researchers used Support Vector Machine, Gaussian Naïve Bayes, Decision Trees, Extra Trees, Bagging Classifier, Random Forests, Logistic Regression and Adaptive Boosting Classifier were used. To sum up the whole discussion it is stated the results give high accuracy and prove that the proposed system is reliable and accurate for the detection and monitoring of waves. Furthermore, for the prediction of outcome, Adaptive Boosting Classifier has shown the best accuracy of 81.77% as compared with other classifiers.

SVM과 신경회로망을 이용한 비선형시스템의 고장감지와 분류방법 연구 (A Study on a Fault Detection and Isolation Method of Nonlinear Systems using SVM and Neural Network)

  • 이인수;조정환;서해문;남윤석
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, we propose a fault diagnosis method using artificial neural network and SVM (Support Vector Machine) to detect and isolate faults in the nonlinear systems. The proposed algorithm consists of two main parts: fault detection through threshold testing using a artificial neural network and fault isolation by SVM fault classifier. In the proposed method a fault is detected when the errors between the actual system output and the artificial neural network nominal system output cross a predetermined threshold. Once a fault in the nonlinear system is detected the SVM fault classifier isolates the fault. The computer simulation results demonstrate the effectiveness of the proposed SVM and artificial neural network based fault diagnosis method.

Robust Real-time Intrusion Detection System

  • Kim, Byung-Joo;Kim, Il-Kon
    • Journal of Information Processing Systems
    • /
    • 제1권1호
    • /
    • pp.9-13
    • /
    • 2005
  • Computer security has become a critical issue with the rapid development of business and other transaction systems over the Internet. The application of artificial intelligence, machine learning and data mining techniques to intrusion detection systems has been increasing recently. But most research is focused on improving the classification performance of a classifier. Selecting important features from input data leads to simplification of the problem, and faster and more accurate detection rates. Thus selecting important features is an important issue in intrusion detection. Another issue in intrusion detection is that most of the intrusion detection systems are performed by off-line and it is not a suitable method for a real-time intrusion detection system. In this paper, we develop the real-time intrusion detection system, which combines an on-line feature extraction method with the Least Squares Support Vector Machine classifier. Applying the proposed system to KDD CUP 99 data, experimental results show that it has a remarkable feature extraction and classification performance compared to existing off-line intrusion detection systems.