• 제목/요약/키워드: Classification trees

검색결과 318건 처리시간 0.025초

Performance Comparison of Decision Trees of J48 and Reduced-Error Pruning

  • Jin, Hoon;Jung, Yong Gyu
    • International journal of advanced smart convergence
    • /
    • 제5권1호
    • /
    • pp.30-33
    • /
    • 2016
  • With the advent of big data, data mining is more increasingly utilized in various decision-making fields by extracting hidden and meaningful information from large amounts of data. Even as exponential increase of the request of unrevealing the hidden meaning behind data, it becomes more and more important to decide to select which data mining algorithm and how to use it. There are several mainly used data mining algorithms in biology and clinics highlighted; Logistic regression, Neural networks, Supportvector machine, and variety of statistical techniques. In this paper it is attempted to compare the classification performance of an exemplary algorithm J48 and REPTree of ML algorithms. It is confirmed that more accurate classification algorithm is provided by the performance comparison results. More accurate prediction is possible with the algorithm for the goal of experiment. Based on this, it is expected to be relatively difficult visually detailed classification and distinction.

계급불균형자료의 분류: 훈련표본 구성방법에 따른 효과 (Classification of Class-Imbalanced Data: Effect of Over-sampling and Under-sampling of Training Data)

  • 김지현;정종빈
    • 응용통계연구
    • /
    • 제17권3호
    • /
    • pp.445-457
    • /
    • 2004
  • 두 계급의 분류문제에서 두 계급의 관측 개체수가 심하게 불균형을 이룬 자료를 분석할 때, 흔히 인위적으로 두 계급의 크기를 비슷하게 해준 다음 분석한다. 본 연구에서는 이런 훈련표본 구성방법의 타당성에 대해 알아보았다. 또한 훈련표본의 구성방법이 부스팅에 미치는 효과에 대해서도 알아보았다. 12개의 실제 자료에 대한 실험 결과 나무모형으로 부스팅 기법을 적용할 때는 훈련표본을 그대로 둔 채 분석하는 것이 좋다는 결론을 얻었다.

리기다 소나무림(林)의 직경연년성장량(直徑連年成長量) 추정(推定) (A Estimation on the Annual Growth in Diameter of Pitch Pine (Pinus rigida Mill.) Stand)

  • 이여하
    • 한국산림과학회지
    • /
    • 제17권1호
    • /
    • pp.23-28
    • /
    • 1973
  • 본시험(本試驗)은 리기다소나무 임분(林分)의 재적성장량(材積成長量)을 추정(推定)하기 위(爲)하여 예비적(豫備的)으로 직경성장량(直徑成長量)을 추정(推定)한 것이다. 표준목(標準木) 223본(本)중 기각목(棄却木)은 전체(全體) 본수(本數)의 약(約) 5%인 12본(本)으로 대체적으로 일률적(一律的)인 성장(成長)을 하고있으며 기각목(棄却木)은 병충해목(病蟲害木)이 이에 속(屬)하고 있으며 임상별(林相別)로 기(旣) 조사발표(調査發表)된 것과 비교(比較)할 때에 단일수종(單一樹種)인 리기다소나무 임분(林分)의 성장(成長)이 가장 좋았다. 직경(x)과 직경성장량(y)과의 관계(關係)를 보면 다음과 같다. y=0.1618+0.0298x 단(但) r=0.9886이다. 리기다소나무 16년생임분(年生林分)의 D.B.H와 평균연년(平均連年) 직경성장량(直徑成長量)의 최소(最少), 평균(平均) 및 최대치(最大値)는 다음과 같다.

  • PDF

무인 자동차의 2차원 레이저 거리 센서를 이용한 도시 환경에서의 빠른 주변 환경 인식 방법 (Fast Scene Understanding in Urban Environments for an Autonomous Vehicle equipped with 2D Laser Scanners)

  • 안승욱;최윤근;정명진
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.92-100
    • /
    • 2012
  • A map of complex environment can be generated using a robot carrying sensors. However, representation of environments directly using the integration of sensor data tells only spatial existence. In order to execute high-level applications, robots need semantic knowledge of the environments. This research investigates the design of a system for recognizing objects in 3D point clouds of urban environments. The proposed system is decomposed into five steps: sequential LIDAR scan, point classification, ground detection and elimination, segmentation, and object classification. This method could classify the various objects in urban environment, such as cars, trees, buildings, posts, etc. The simple methods minimizing time-consuming process are developed to guarantee real-time performance and to perform data classification on-the-fly as data is being acquired. To evaluate performance of the proposed methods, computation time and recognition rate are analyzed. Experimental results demonstrate that the proposed algorithm has efficiency in fast understanding the semantic knowledge of a dynamic urban environment.

지식 기반 시스템에서 GIS 자료를 활용하기 위한 기계 학습 기법에 관한 연구 - Landsat ETM+ 영상의 토지 피복 분류를 사례로 (A Machine learning Approach for Knowledge Base Construction Incorporating GIS Data for land Cover Classification of Landsat ETM+ Image)

  • 김화환;구자용
    • 대한지리학회지
    • /
    • 제43권5호
    • /
    • pp.761-774
    • /
    • 2008
  • 원격탐사에서 위성 영상의 디지털 처리 기술이 발달하면서 GIS 자료와 지식 기반 전문가 시스템과의 통합에 대한 관심이 증가하고 있다. 본 연구에서는 위성영상을 토지피복 분류하는 과정에서 GIS 자료를 통합하기 위하여 기계 학습 기법과 규칙 기반 분류 기법을 적용하였다. 사례 지역을 대상으로 Landsat ETM+ 영상과 고도, 경사, 향, 수역과의 거리, 도로와의 거리, 인구밀도 등의 GIS 자료를 함께 활용하였다. C5.0 추론 기계 학습 알고리듬을 이용하여 350개의 표본점으로부터 결정 트리와 분류 규칙을 생성하였다. 본 연구에서 도출된 규칙을 이용하여 분류한 결과, 고독 수역과의 거리, 인구밀도 등의 GIS 자료가 규칙 기반 분류에 효과적인 것으로 나타났다. 본 연구에서 제안한 기계 학습과 지식 기반 분류 기법을 이용하면 다양한 GIS 자료들을 통합하여 위성영상을 보다 효과적으로 분류할 수 있다.

장애 음성 판별을 위한 의료/전자 융복합 소프트웨어 개발 (Development of medical/electrical convergence software for classification between normal and pathological voices)

  • 문지혜;이지연
    • 디지털융복합연구
    • /
    • 제13권12호
    • /
    • pp.187-192
    • /
    • 2015
  • 장애음성을 판별할 수 있는 소프트웨어가 개발 될 경우, 원격의료와 언어치료 등 여러 융복합 분야에서의 활용도가 매우 높다. 본 논문은 성대 진동에 대한 변화율을 나타내는 의료정보인 음향학적 파라미터와 신호처리 기반 고차 통계량에 기반을 둔 파라미터를 융합하여, CART(Classification And Regression Trees) 분석을 통해서 정상/장애음성 판별 프로그램을 구현하였다. 사용된 음향학적 파라미터는 Jitter(%)와 shimmer(%)이다. 그리고 본 연구에서 제안된 고차통계량 기반 파라미터는 왜도(Skewness)와 첨도(Kurtosis)의 평균과 분산이다. Kay Elemetrics의 데이터베이스에서 무작위로 발췌된 정상음성 53명, 장애 음성 173명의 /아/ 발화를 이용하여 결정트리(Decision tree) 기반장애음성 판별을 위해 평균적으로 83.15%의 성능을 보이는 알고리즘을 구현하였다. 그 결과를 바탕으로 추후 상용화를 고려하여 사용자 친화적인 프레임 워크에 의해 컨텐츠를 생성하는 융복합형 기능이 포함된 장애음성 판별 프로그램을 개발하였다.

CRT 알고리즘을 이용한 우리나라 노인의 사회활동 영향요인 예측 모형 개발 (Development of Predictive Model of Social Activity for the Elderly in Korea using CRT Algorithm)

  • 변해원
    • 한국융합학회논문지
    • /
    • 제9권10호
    • /
    • pp.243-248
    • /
    • 2018
  • 노년기의 사회참여는 사회적 상호작용의 기회를 제공하여 삶의 만족감을 고취시키기 때문에 성공적인 노화를 달성하기 위해서 중요하다. 이 연구는 우리나라 지역사회 노인을 대상으로 노년기 사회 활동의 관련요인과 사회 참여를 예측하는 통계적 분류 모형을 구축하였다. 분석 대상은 2015년도 지역사회 건강조사를 완료한 60세 이상 노인 1,864명(남 829명, 여 1,035명)이었다. 결과 변수는 지난 1달 간 사회 활동 경험(있음, 없음)으로 정의하였다. 예측모형은 Classification and Regression Trees(CRT) 알고리즘 기반 의사결정나무모형을 이용하여 구축하였다. 연구결과, 사회참여의 유의미한 분류 변수는 주관적 건강, 이웃과의 만남빈도, 친척과의 만남빈도, 배우자 동거여부이었고, 그 중에서도 가장 우선적으로 관여하는 예측 요인은 주관적 건강수준이었다. 본 연구의 결과를 기초로 도래하는 초고령사회의 성공적인 노화를 대비하기 위해서 노인의 사회 활동에 대한 사회적 관심과 지원이 요구된다.

데이터마이닝 방법을 이용한 아시아 민족 분류 모형 구축 (Asian Ethnic Group Classification Model Using Data Mining)

  • 김윤건;이지현;조소희;김문영;이숭덕;하은호;안재준
    • The Korean Journal of Legal Medicine
    • /
    • 제41권2호
    • /
    • pp.32-40
    • /
    • 2017
  • In addition to identifying genetic differences between target populations, it is also important to determine the impact of genetic differences with regard to the respective target populations. In recent years, there has been an increasing number of cases where this approach is needed, and thus various statistical methods must be considered. In this study, genetic data from populations of Southeast and Southwest Asia were collected, and several statistical approaches were evaluated on the Y-chromosome short tandem repeat data. In order to develop a more accurate and practical classification model, we applied gradient boosting and ensemble techniques. To infer between the Southeast and Southwest Asian populations, the overall performance of the classification models was better than that of the decision trees and regression models used in the past. In conclusion, this study suggests that additional statistical approaches, such as data mining techniques, could provide more useful interpretations for forensic analyses. These trials are expected to be the basis for further studies extending from target regions to the entire continent of Asia as well as the use of additional genes such as mitochondrial genes.

변수선택 편향이 없는 회귀나무를 만들기 위한 알고리즘 (Regression Trees with. Unbiased Variable Selection)

  • 김진흠;김민호
    • 응용통계연구
    • /
    • 제17권3호
    • /
    • pp.459-473
    • /
    • 2004
  • 본 논문에서는 Breiman 등(1984)의 전체탐색법이 갖고 있는 변수선택 편향을 극복할 수 있는 알고리즘을 제안하였다. 제안한 알고리즘은 노드의 분리 변수를 선택하는 단계와 그 선택된 변수에 대해서만 이진분리를 위한 분리점을 찾는 단계로 나뉘어져 있다. 예측변수가 연속형 일 때는 스피어만의 순위상관계수에 의한 검정을 수행하고, 범주형일 때는 크루스칼-왈리스의 통계량에 의한 검정을 수행하여 통계적으로 가장 유의한 변수를 분리변수로 선택하였고 Breiman 등(1984)의 전체탐색법을 그 변수에만 적용하여 노드의 분리기준을 정하였다 모의실험 연구를 통해 Breiman등(19히)의 CART와 제안한 알고리즘을 변수선택 편의, 변수선택력파 평균제곱오차 측면에서 서로 비교하였다. 아울러 두 알고리즘을 실제 자료에 적용하여 효율을 서로 비교하였다.

Analysis of effects of burning in grasslands with quantifying succession stages by life-history traits in Kirigamine, central Japan

  • Kato, Jun;Kawakami, Mihoko
    • Journal of Ecology and Environment
    • /
    • 제36권1호
    • /
    • pp.101-112
    • /
    • 2013
  • To quantitatively analyze the effects of burning, we conducted a vegetation survey in the grasslands in Kirigamine, central Japan. We classified each species into stages of succession based on the life-history traits of the species and defined the score of the species in each stand based on the classification. We weighted the scores with a v-value, the product of coverage and height in the quadrat, and summed them to calculate the index of dynamic status. With these indices, we were able to quantitatively compare the stands in the study area and discern minute differences between the stands with different lengths of restoration periods since the disturbance of burning. These indices correlated with the v-value of trees, suggesting that the disturbance of burning seemed to affect the trees in the stand. We then calculated the growth of the tree species Pinus densiflora to evaluate its contribution to the index of dynamic status.