• 제목/요약/키워드: Classification of Scheme

검색결과 839건 처리시간 0.028초

A Study on the Improvement of the Defense-related International Patent Classification using Patent Mining (특허 마이닝을 이용한 국방관련 국제특허분류 개선 방안 연구)

  • Kim, Kyung-Soo;Cho, Nam-Wook
    • Journal of Korean Society for Quality Management
    • /
    • 제50권1호
    • /
    • pp.21-33
    • /
    • 2022
  • Purpose: As most defense technologies are classified as confidential, the corresponding International Patent Classifications (IPCs) require special attention. Consequently, the list of defense-related IPCs has been managed by the government. This paper aims to evaluate the defense-related IPCs and propose a methodology to revalidate and improve the IPC classification scheme. Methods: The patents in military technology and their corresponding IPCs during 2009~2020 were utilized in this paper. Prior to the analysis, patents are divided into private and public sectors. Social network analysis was used to analyze the convergence structure and central defense technology, and association rule mining analysis was used to analyze the convergence pattern. Results: While the public sector was highly cohesive, the private sector was characterized by easy convergence between technologies. In addition, narrow convergence was observed in the public sector, and wide convergence was observed in the private sector. As a result of analyzing the core technologies of defense technology, defense-related IPC candidates were identified. Conclusion: This paper presents a comprehensive perspective on the structure of convergence of defense technology and the pattern of convergence. It is also significant because it proposed a method for revising defense-related IPCs. The results of this study are expected to be used as guidelines for preparing amendments to the government's defense-related IPC.

Resilience against Adversarial Examples: Data-Augmentation Exploiting Generative Adversarial Networks

  • Kang, Mingu;Kim, HyeungKyeom;Lee, Suchul;Han, Seokmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.4105-4121
    • /
    • 2021
  • Recently, malware classification based on Deep Neural Networks (DNN) has gained significant attention due to the rise in popularity of artificial intelligence (AI). DNN-based malware classifiers are a novel solution to combat never-before-seen malware families because this approach is able to classify malwares based on structural characteristics rather than requiring particular signatures like traditional malware classifiers. However, these DNN-based classifiers have been found to lack robustness against malwares that are carefully crafted to evade detection. These specially crafted pieces of malware are referred to as adversarial examples. We consider a clever adversary who has a thorough knowledge of DNN-based malware classifiers and will exploit it to generate a crafty malware to fool DNN-based classifiers. In this paper, we propose a DNN-based malware classifier that becomes resilient to these kinds of attacks by exploiting Generative Adversarial Network (GAN) based data augmentation. The experimental results show that the proposed scheme classifies malware, including AEs, with a false positive rate (FPR) of 3.0% and a balanced accuracy of 70.16%. These are respective 26.1% and 18.5% enhancements when compared to a traditional DNN-based classifier that does not exploit GAN.

Some Suggestion on the 5th Revise Edition of Korean Decimal Classification (한국십진분류법 제5판 개정 방안)

  • Jung, Hae-Sung
    • Journal of Korean Library and Information Science Society
    • /
    • 제38권4호
    • /
    • pp.529-546
    • /
    • 2007
  • This study is to suggest the new ideal classification scheme of revise edition of KDC. New suggestions are : using add table, diversify of note, and expand the auxiliary tables contents, add instruction like "Add to base number$\sim$notation $\sim$from table $\sim$."

  • PDF

Single-Layer Neural Networks with Double Rejection Mechanisms for Character Recognition (단층 신경망과 이중 기각 방법을 이용한 문자인식)

  • 임준호;채수익
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • 제32B권3호
    • /
    • pp.522-532
    • /
    • 1995
  • Multilayer neural networks with backpropagation learning algorithm are widely used for pattern classification problems. For many real applications, it is more important to reduce the misclassification rate than to increase the rate of successful classification. But multilayer perceptrons(MLP's) have drawbacks of slow learning speed and false convergence to local minima. In this paper, we propose a new method for character recognition problems with a single-layer network and double rejection mechanisms, which guarantees a very low misclassification rate. Comparing to the MLP's, it yields fast learning and requires a simple hardware architecture. We also introduce a new coding scheme to reduce the misclassification rate. We have prepared two databases: one with 135,000 digit patterns and the other with 117,000 letter patterns, and have applied the proposed method for printed character recognition, which shows that the method reduces the misclassification rate significantly without sacrificing the correct recognition rate.

  • PDF

Vehicle Classification and Tracking based on Deep Learning (딥러닝 기반의 자동차 분류 및 추적 알고리즘)

  • Hyochang Ahn;Yong-Hwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • 제22권3호
    • /
    • pp.161-165
    • /
    • 2023
  • One of the difficult works in an autonomous driving system is detecting road lanes or objects in the road boundaries. Detecting and tracking a vehicle is able to play an important role on providing important information in the framework of advanced driver assistance systems such as identifying road traffic conditions and crime situations. This paper proposes a vehicle detection scheme based on deep learning to classify and tracking vehicles in a complex and diverse environment. We use the modified YOLO as the object detector and polynomial regression as object tracker in the driving video. With the experimental results, using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.

  • PDF

Analysis of forest types and stand structures over Korean peninsula Using NOAA/AVHRR data

  • Lee, Seung-Ho;Kim, Cheol-Min;Oh, Dong-Ha
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.386-389
    • /
    • 1999
  • In this study, visible and near infrared channels of NOAA/AVHRR data were used to classify land use and vegetation types over Korean peninsula. Analyzing forest stand structures and prediction of forest productivity using satellite data were also reviewed. Land use and land cover classification was made by unsupervised clustering methods. After monthly Normalized Difference Vegetation Index (NDVI) composite images were derived from April to November 1998, the derived composite images were used as temporal feature vector's in this clustering analysis. Visually interpreted, the classification result was satisfactory in overall for it matched well with the general land cover patterns. But subclassification of forests into coniferous, deciduous, and mixed forests were much confused due to the effects of low ground resolution of AVHRR data and without defined classification scheme. To investigate into the forest stand structures, digital forest type maps were used as an ancillary data. Forest type maps, which were compiled and digitalized by Forestry Research Institute, were registered to AVHRR image coordinates. Two data sets were compared and percent forest cover over whole region was estimated by multiple regression analysis. Using this method, other forest stand structure characteristics within the primary data pixels are expected to be extracted and estimated.

  • PDF

Genetic Algorithm to find Classification Rule for Classifier Systems (분류시스템의 분류 규칙 발견을 위한 유전자 알고리즘)

  • Kim Dae-Hee;Park Sahng Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제9권4호
    • /
    • pp.16-25
    • /
    • 2004
  • A Classifier System is a system based on rules to invent new rules from the present useful ones. In this paper, Genetic Algorithms are proposed to find good classification rule of Classifier System which can extract useful information from huge database. The proposed scheme is applied to the real problems such as the car insurance problem to evaluate the performance of Genetic Algorithm based classifier systems.

  • PDF

Lane Detection and Tracking Using Classification in Image Sequences

  • Lim, Sungsoo;Lee, Daeho;Park, Youngtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권12호
    • /
    • pp.4489-4501
    • /
    • 2014
  • We propose a novel lane detection method based on classification in image sequences. Both structural and statistical features of the extracted bright shape are applied to the neural network for finding correct lane marks. The features used in this paper are shown to have strong discriminating power to locate correct traffic lanes. The traffic lanes detected in the current frame is also used to estimate the traffic lane if the lane detection fails in the next frame. The proposed method is fast enough to apply for real-time systems; the average processing time is less than 2msec. Also the scheme of the local illumination compensation allows robust lane detection at nighttime. Therefore, this method can be widely used in intelligence transportation systems such as driver assistance, lane change assistance, lane departure warning and autonomous vehicles.

A Study on the Methodology for Defect Management in the Requirements Stage (요구사항단계의 결함관리를 위한 방법론에 관한 연구)

  • Lee, Eun-Ser
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제9권7호
    • /
    • pp.205-212
    • /
    • 2020
  • Defects are an important factor in the quality of software developments. In order to manage defects, we propose additional information of search and classification. Additional information suggests a systematic classification scheme and method of operation. In this study, we propose additional information at the requirements analysis stage for defect management.

Research Paper Classification Scheme based on Word Embedding (워드 임베딩 기반 연구 논문 분류 기법)

  • Dipto, Biswas;Gil, Joon-Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.494-497
    • /
    • 2021
  • 텍스트 분류(text classification)는 원시 텍스트 데이터로부터 정보를 추출할 수 있는 기술에 기반하여 많은 양의 텍스트 데이터를 관심 영역으로 분류하는 것으로 최근에 각광을 받고 있다. 본 논문에서는 워드 임베딩(word embedding) 기법을 이용하여 특정 분야의 연구 논문을 분류하고 추천하는 기법을 제안한다. 워드 임베딩으로 CBOW(Continuous Bag-of-Word)와 Sg(Skip-gram)를 연구 논문의 분류에 적용하고 기존 방식인 TF-IDF(Term Frequency-Inverse Document Frequency)와 성능을 비교 분석한다. 성능 평가 결과는 워드 임베딩에 기반한 연구 논문 분류 기법이 TF-IDF에 기반한 연구 논문 분류 기법보다 좋은 성능을 가진다는 것을 나타낸다.