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Abstract 

 
Recently, malware classification based on Deep Neural Networks (DNN) has gained 

significant attention due to the rise in popularity of artificial intelligence (AI). DNN-based 
malware classifiers are a novel solution to combat never-before-seen malware families 
because this approach is able to classify malwares based on structural characteristics rather 
than requiring particular signatures like traditional malware classifiers. However, these DNN-
based classifiers have been found to lack robustness against malwares that are carefully crafted 
to evade detection. These specially crafted pieces of malware are referred to as adversarial 
examples. We consider a clever adversary who has a thorough knowledge of DNN-based 
malware classifiers and will exploit it to generate a crafty malware to fool DNN-based 
classifiers. In this paper, we propose a DNN-based malware classifier that becomes resilient 
to these kinds of attacks by exploiting Generative Adversarial Network (GAN) based data 
augmentation. The experimental results show that the proposed scheme classifies malware, 
including AEs, with a false positive rate (FPR) of 3.0% and a balanced accuracy of 70.16%. 
These are respective 26.1% and 18.5% enhancements when compared to a traditional DNN-
based classifier that does not exploit GAN. 
 
 
Keywords: Malware classification, Microsoft Malware Classification Challenge 
(BIG2015), conditional GAN, Data augmentation, Adversarial Examples 
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1. Introduction 

Malware is defined as software designed to perform harmful actions on infected 
communication devices such as computers and mobile phones. With the rapid development of 
IT technology, malware detection techniques are constantly evolving, at the same time 
malware is becoming increasingly complex and sophisticated to evade detection from malware 
detectors such as vaccines, firewalls, and IPS/IDSes. In order to respond to the rapid changes 
in malware, several machine learning (ML) based malware classification methods have 
recently been introduced [1-3].  
Deep Neural Networks (DNN), also known as deep learning, are an increasingly popular ML 
technique that have emerged as a viable alternative for malware classification. DNN-based 
malware classification is performed based on similarity among malware. For example, 
malware that belong to the same family often reuse the same libraries or functions, this gives 
them high similarities at the binary-level [2]. Inspired by these similarities, we convert 
malware binaries into gray scale images. This transforms the existing malware classification 
problem into an image classification problem. It is widely known that the performance of 
DNN-based image classifiers is generally excellent. Our experiments using the BIG2015 
malware dataset also confirms this top-notch performance [4]. 
Despite the excellent performance of DNN-based classifiers, several issues remain when it 
comes to the actual use of those classifiers in practice. Consider an attacker who has prior 
knowledge about the training data or techniques used by a DNN-based classifier, e.g., the 
architecture of a DNN. Such an attacker may take tailored countermeasures to the DNN-based 
classifier [5]. For example, some studies have shown that DNN-based classifiers can be fooled 
by intentional perturbations [6-9]. Such perturbations typically include polymorphisms and/or 
obfuscation of malware. These are hardly imperceptible, and easily neutralize well-trained 
DNN-based malware classifiers/detectors. In general, malware variants crafted by adding such 
intentional perturbations, especially those for neutralizing ML-based classifiers, are referred 
to as Adversarial Examples (AEs). To successfully apply ML techniques to security 
applications, a thorough vetting of their resistance to AEs is required [10].  
In this paper, we present a DNN-based malware classifier that is resilient to AEs. In order to 
generate such a classifier, we first assume a clever adversary who has a thorough 
understanding of our DNN-based classifier1. Against this adversary, we augment the training 
data by adding artificially crafted malware samples, i.e., AEs that are generated leveraging a 
Generative Adversarial Network (GAN) [11]. Here, the AE is a geometric transformation of 
an original image of the malware. Note that we only apply label-preserving linear 
transformations such as translation, rotation, scaling, and horizontal shearing, so as not to 
change the data distribution of the image where it can be determined by higher-level features 
[13]. Augmenting training data has recently been introduced as an effective countermeasure 
against such an adversary, this is referred to as adversarial training (AT) [6, 8]. 
The rationale behind the use of a GAN as a data augmentation method is as follows. The best 
strategy for a malware author is to perform small re-writes or to add minimal extra malware 
code to a sufficient degree to deceive the target malware detector while preserving the 
functionality of the original malware. This implies that an AE image should contain enough 
geometrical perturbations to fool the target DNN-based classifier. On the other hand, in order 

 
1 Here, this DNN-based classifier refers to the malware classification scheme presented in [4]. Therefore, in this 
paper, we mainly discuss on how to improve the scheme in [4] so as to be resilient against AEs.  
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to detect an AE, it is necessary to predict possible perturbations and incorporate such predicted 
perturbations into the DNN-model in advance. This extends the distribution of training data to 
capture the features of malware variants including AEs. Through this extension, we 
hypothesize that our DNN-based model will be capable of identifying a variety of malware 
variants including AEs [14].  
Contributions: The main contributions of this paper are the following.  

• We present a novel DNN-based malware classifier that is capable of detecting a 
variety of malware variants including AEs. We designed a new DNN architecture to 
fully learn the features of malware variants, including AEs crafted by exploiting GAN.  

• Further, we examined various features that could be an impediment to a DNN-based 
classifier by extensive experiments. These newly discovered features are proven to 
enhance the resilience against AEs and are incorporated into our scheme. This 
examination opens a new research direction on how to deal with the well-known 
weak point of DNN-based classifiers, i.e., AEs. 

• We present experimental evidence2 for the superior performance of the proposed 
scheme. Our experiment was conducted using Microsoft Malware Classification 
Challenge (BIG 2015). The experimental results show that the proposed scheme 
classifies malware, including AEs, with a false positive rate (FPR) of 3.0% and a 
balanced accuracy of 70.16%. These are respective 26.1% and 18.5% enhancements 
when compared to a traditional DNN-based classifier that does not exploit GAN. 

Organization: This paper proceeds as follows. Section 2 reviews the related work. Section 3 
summarizes our previous DNN-based malware classification scheme. Section 4 briefly 
explains GAN and provides the details of how to augment training data for the DNN. Then, 
we describe how the augmented training data are incorporated into the proposed scheme. 
Section 5 evaluates the scheme. Finally, section 6 concludes the paper.  

2. Related Work 

2.1 Malware Visualization and Classification  
Malware visualization: Malware analysis is a time-consuming and cumbersome task because 
there is no perfect approach and/or specified way to address it. So far various approaches have 
been studied, we have introduced several malware classification schemes based on image 
processing [1-2, 5, 16-17]. [2, 5] introduced the idea of representing malicious software 
binaries as gray scale images. Different features are extracted from each malware image 
sample using GIST [5]. The K-nearest neighbor algorithm is used for classification. We have 
also focused on enhancing existing image-based classifiers so they can detect malware crafted 
with the purpose of evading those classifiers. 
Adversarial examples and countermeasures: When classification is performed in the image 
domain, it has been found that perturbations can cause increasing the misclassification rate 
even though only a few pixels on the image were changed, these changes are hardly visually 
discernible [6-9]. [18] proposed a new method of generating AEs by a GAN utilizing the 
distribution of the original instance. Studies that have generated AEs [10, 20-23] assumed 
several constraints for modifying malware binaries while preserving their functionality. These 

 
2 Interested readers may find the source code at https://sites.google.com/site/daxttt/resilience-to-aes-gans and can 
re-produce the experimental results  

https://sites.google.com/site/daxttt/resilience-to-aes-gans
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restrictions limit the range and amount of the perturbations introduced. For example, [22] 
generated AEs by injecting a few bytes into areas that are not frequently used amongst the 
malware files. [20] fixed only the manifest file of a piece of malware. [10, 21] modified only 
a few bytes at the end of each malware sample for a gradient-based attack. [23] presented 
MalGAN that can generate AEs using a GAN. On the other side, defense techniques against 
AEs have also been studied in response to the development of these AE generation 
technologies. One promising method is to elaborate on the training data to train a more 
powerful classifier [6, 8]. [19] modified the training process of a DNN so that the learned 
classification model is less likely to be affected by AEs. [8] can be regarded as the most similar 
to our research in that the research goals are similar. However, our paper differs from [8] in 
that our GAN is integrated into the DNN-based classifier in a way that effectively introduces 
a new DNN architecture that is resistant to AEs.  

2.2 Data Augmentation Based on GAN  
Since a GAN was first proposed in [11], they have been applied several times in literature [1, 
13, 14, 23, 24] and have been extended in various ways [25-27]. Recently, GANs have 
frequently been used as an effective way to generate additional artificial data to enlarge the 
dataset. This is a common use case for data augmentation. It is appropriate for addressing a 
class imbalance problem [24] and/or a lack of training data. Using malware samples generated 
by a GAN, a DNN can significantly reduce overfitting, thus this deep learning approach not 
only improves accuracy but also scalability [29]. For malware classes with relatively few 
samples in the dataset, malware samples have been artificially generated using a GAN [24]. 
[14] showed that a GAN can reduce the effect of adversarial perturbations, by projecting input 
images onto the range of the GAN’s generator prior to feeding them to the classifier. A GAN’s 
generation process does not depend on specific classes, so in theory, a GAN can be applied to 
identify unknown data classes [10].  

3. DNN-based Malware Classification 
In this section, we summarize the malware visualization and DNN-based classification scheme 
that we proposed previously in [4]. Several malware visualization schemes exist in the 
literature, we applied the scheme introduced in [2]. This converts malware classification into 
image classification. 

Fig. 1. Malware visualization process in the IC algorithm.  
 
To apply DNN-based malware classification, each malware sample should be converted into 
a corresponding image of fixed size. Fig. 1 illustrates how malware files are converted into 
Incremental Coordinate (IC) [2] image files. First, the malware binary is read in 4-byte 
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increments. The first 2 bytes are converted to x coordinates, the last 2 bytes are converted to y 
coordinates, the value represented by those coordinates is incremented by 1. This process is 
performed until the end of the file is reached. This generates a 256 by 256 gray scale image 
from each malware sample. The key advantage of visualizing a malicious PE file  

is that it can perform malware detection/classification without running malware. In addition, 
small changes that were not detectable in malware binaries may be detectable in malware 
converted to images [16]. 
In Fig. 2, we show two samples per class for classes 1 to 9. It can be easily seen that the images 
of malware belonging to the same class are quite similar. This can be explained by the practice 
of reusing existing malware code in the production of a malware variant [5]. Therefore, the 
main binary signatures of malware from the same malware family are similar or even identical 
to each other. We trained a DNN-based classifier using images generated through an IC 
algorithm as training data. The DNN architecture used was Google Inception V3, a.k.a., 
GoogLeNet [9], this algorithm is known to provide decent performance in various fields. The 
result of a performance evaluation using the BIG 2015 data set was our DNN-based malware 
classifier had an overall accuracy of 97.4%.  

4. Malware Classification Resilient against AEs 
In this section, we extend our previous work [4] to gain resilience against AEs. We begin with 
briefly summarizing GANs and the enhanced version we use, a conditional GAN. Then, we 
provide our assumptions regarding AEs and describe how we craft adversarial examples 
against legitimate malware based on these assumptions.  

4.1 Generative Adversarial Network  
A GAN [11] consists of two deep convolutional networks: the discriminative network and the 
generative network. The generative network 𝐆𝐆 produces data from a latent noise vector 𝐳𝐳 that 
follows a Gaussian distribution (𝐆𝐆(𝐳𝐳) = fake images). The discriminative network 𝐃𝐃 can learn 

Fig. 2. Examples of malware images generated using the IC algorithm.  
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feature distributions from training data and synthesized data [11] and it outputs a probability 
distribution over possible image source [26]. During the adversarial training, data flows in 
batches through 𝐆𝐆  and  𝐃𝐃 and their weights are fine tuned to optimize their loss functions 𝐋𝐋 
[24]. The whole adversarial training process can be described as follows: 

min
𝐆𝐆

max
𝐃𝐃

𝐋𝐋(𝐃𝐃,𝐆𝐆) = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[log(𝐃𝐃(𝑥𝑥))] + 𝔼𝔼𝐳𝐳~𝑝𝑝𝐳𝐳(𝐳𝐳)[log(1 − 𝐃𝐃(𝐆𝐆(𝐳𝐳)))].          (1) 

A traditional GAN cannot control the generated data, but it can control the generated data 
through conditioning [25]. Specifically, a GAN can generate a fake image without a label. To 
apply to multiclass classification, the GAN needs to be extended to a conditional version. Thus, 
we use a conditional GAN, which extends a traditional GAN so as to feed extra information 
to our DNN, i.e., labels. Note that the extra information 𝐘𝐘 could be any kind of auxiliary 
information. Now, a loss function for our new conditional GAN can be re-written as follows: 

min
𝐆𝐆

max
𝐃𝐃

𝐋𝐋(𝐃𝐃,𝐆𝐆) = 𝔼𝔼𝑥𝑥,𝑦𝑦~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦)[log(𝐃𝐃(𝑥𝑥,𝑦𝑦))] + 𝔼𝔼𝐳𝐳~𝑝𝑝𝐳𝐳(𝐳𝐳),𝐲𝐲~𝑝𝑝𝐳𝐳(𝐲𝐲),[log(1 −𝐃𝐃(𝐆𝐆(𝐳𝐳, 𝐲𝐲)))].        
(2) 

4.2 Crafting Adversarial Examples 
Here we describe how we synthesize AEs. AEs can be considered as malicious manipulations 
of previous malware to avoid detection from malware detectors. Note that the DNN-based 
classifier we previously proposed used the IC algorithm for malware visualization. Since the 
IC algorithm captures the structural features in malware, it can be vulnerable to an attacker 
who attempts to manipulate those features. Injecting junk code can be done without 
compromising the functionality of the original program. For example, an attacker could create 
AEs by adding a large amount of duplicate data or by adding some hostile bytes. Attacks of 
this kind have been addressed in [22, 31].  
In this paper, we consider a similar attacker strategy that injects or replaces some random bytes. 
When malware is converted to an image file using the IC algorithm, any bytes inserted or 
replaced are converted into discrete values, which can be considered as additional noise newly 
introduced. Surprisingly, although the generated malware variants are not much different from 
the original malware at the binary as well as the image level, DNN-based classifiers fail to 
classify many of those malware variants. Now, we assume that AEs are malware images that 
contain a small perturbation δ, i.e., noise, that is sufficient to fool a malware detector while 
retaining its structural features [5].   
The basis of an adversarial attack strategy is to approach a specific optimal point using 
gradient-based optimization [6-9]. Its main goal is to achieve a high misclassification rate 
while adding only minimal perturbations to the AEs. The crafted AEs can be expressed by the 
following formula: 

𝑥𝑥𝐴𝐴𝐴𝐴 ≜ 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐚𝐚𝐚𝐚𝐚𝐚𝐦𝐦𝐦𝐦𝐦𝐦
𝛿𝛿

𝔼𝔼
𝛿𝛿∈[−𝜖𝜖,𝜖𝜖]

 {𝛿𝛿: 𝐹𝐹(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝛿𝛿) ≠ 𝐹𝐹(𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)}.                     (3) 

Generation of AEs: When generating AEs obtaining an optimal solution through a gradient-
based method requires complete knowledge of the DNN architecture, training parameters, and 
data, so this type of attack is infeasible in practice. In general, we can assume that an attacker 
knows the training algorithms and data in advance. Despite the fact that the attacker has 
extensive knowledge of DNN-based classifiers, finding a specific perturbation value δ that 
satisfies Eq. 3 is a difficult task.  
In addition, an attacker must consider two requirements at the same time: (i) to maintain core 
functionalities of the malware, and (ii) to evade malware detectors effectively. Manipulating 
a PE file with these goals is, in general, a non-trivial task because malware can lose its key 
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function even if just a single byte is changed [21]. Thus, we apply the following when crafting 
AEs:  

• We use additive Gaussian white noise (AGWN) to craft AEs. AGWN noise is 
represented by some discrete values in the resulting malware image and these can be 
generated by injecting junk code into the malware. Injecting some duplicate data or 
adding some hostile bytes can be done without compromising the functionality of the 
malware. 

• We limit the amount of perturbation. Specifically, we limit the maximum value of 
the standard deviation of the AGWN to 0.001. According to our experiments, if the 
standard deviation value exceeds 0.001, the generated AEs are totally unpredictable. 
Therefore, they can no longer be considered relevant to the original malware class. 

We use Multiscale-SSIM (MS-SSIM) to quantify the similarity between the original image 
and the fake image. MS-SSIM is based on the assumptions that human visual perception when 
extracting structural information from images performs well in principle. Therefore, a 
structural similarity measurement can be used as an approximate measure of similarity 
between images [32]. The range of MS-SSIM values is between 0.0 and 1.0. The higher the 
MS-SSIM, the more similar the image. 

We compare the generated AE images with the original malware images in terms of MS-SSIM. 
The smaller the perturbation, the harder it is to discern the difference. Therefore, a well-written 
AE has a high MS-SSIM score but has an enough perturbation to deceive the classifier. Fig. 3 
shows some AE image examples that have MS-SSIM > 0.95. These images are visually and 
structurally similar to the original images. The original image was correctly classified with a 
confidence value of 0.99. However, despite the high MS-SSIM score, AE images are 
misclassified with a confidence value of 0.90.  
Fig. 4 shows the MS-SSIM distribution of each malware class. We first randomly choose a 
pair of images per malware family from the set of original images, without duplication, and 
measure the MS-SSIM for each pair. This random choice is conducted 10 times in each of the 
9 different classes, thus a total of 90 pairs are chosen. Next, we randomly choose two images, 
one from the set of AE images the other from the set of original images, per each malware 
family, we then measure the MS-SSIM for the selected pair. This also is conducted 10 times. 
As shown in Fig. 4, the value of the MS-SSIM between the original malware image and the 
AE image is not significantly different from the value of the MS-SSIM between the original 

Fig. 3. The image on the left is the original malware image. The center is AGWN with a mean of 0 and 
a stddev of 0.001. The image on the right is an AE created by combining the two images on the left. 
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malware images. This means that there are only small visual or structural differences between 
the original malware and the AEs. 

 
Quantification of the impact of perturbation: To quantify the impact of the perturbations, 
we measure balanced accuracy and misclassification rate. Balanced accuracy is the average of 
the proportion corrects for each class individually and the misclassification rate is the 
percentage of malware samples that were classified correctly without any noise injection, but 
were then misclassified after noise injection. Due to the use of AGWN, greater deviations 
mean that more noise is injected or a more demanding AEs is created. Fig. 5 shows the 
performance of the DNN-based malware classification scheme in [4] for malware datasets 
including AEs. We observe that the performance decreases significantly as the standard 
deviation of the AGWN increases. 

4.3 Resilient Malware Classifier Exploiting Data Augmentation 
The primary goal of this research is to build a DNN-based malware classifier that has 
robustness against AEs. Eq. 4 describes a modified process to train the DNN-based malware 
classifier using data augmentation, where C is the class label and N is the number of added 

Fig. 5. Misclassification rate and balance accuracy according to the degree of the standard deviation 
of AGWN for DNN-based classifier presented in [4] 

Fig. 4. The image on the left is the distribution of MS-SSIM for each malware class, and the image on 
the right is the distribution of MS-SSIM between the original image and the AE image for each 

malware class. 
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samples per class. Here, data augmentation means that the AEs generated by the conditional 
GAN's generative network 𝐆𝐆 and the original malware images are used together as training 
data for a new DNN-based classifier. ℙ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗  is the distribution of extended training data. Now, 
we need to minimize the loss and find the optimal parameters.  

ℙ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ = �[𝑥𝑥 + ∑ ∑ 𝔼𝔼𝑥𝑥~𝑝𝑝𝑧𝑧(𝑧𝑧){𝐺𝐺(𝑧𝑧𝑐𝑐|𝑦𝑦𝑛𝑛)}𝑁𝑁
𝑛𝑛=1 ]𝐶𝐶 

𝑐𝑐=1 ,𝑦𝑦� ~ ℙ,   
          𝛉𝛉∗ =  𝐚𝐚𝐚𝐚𝐚𝐚𝐦𝐦𝐦𝐦𝐦𝐦

𝜃𝜃
𝔼𝔼(𝑥𝑥,𝑦𝑦) ∈ ℙ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∗ 𝑳𝑳(𝜃𝜃, 𝑥𝑥, 𝑦𝑦).                    (4) 

This extension smoothes the data distribution so that a classifier cannot be sensitive to small 
perterbations. As the number of training data increases, as long as the data is informative a 
classifier can continue exploring the loss function landscape. Also, this may prevent a 
classifier from local optimization. Therefore, we conjecture that GAN-based augmentation can 
complement the classifier’s brittleness to AEs. 
To generate such AEs, we need an extensively pre-trained generative model 𝐆𝐆. We use label 
𝒚𝒚 for the additional information from the conditional GAN. Then, 𝐘𝐘 is fed into the pre-trained 
generator 𝐆𝐆 with latent vector 𝐙𝐙. Generated AEs G(𝐗𝐗|𝐘𝐘), 𝑥𝑥𝑛𝑛 ∈ 𝐗𝐗,𝑦𝑦𝑛𝑛 ∈ 𝐘𝐘 are combined with 
the original training dataset 𝐗𝐗, producing augmented training data 𝐑𝐑. Using this training data 
set, the DNN-based classifier is retrained to be robust to the AEs G(𝐗𝐗|𝐘𝐘). When it comes to 
the particular DNN architecture, the Google Inception V3 (GoogLeNet) model was chosen 
because it performed best in our extensive experiments. 
Experiments: We describe the experimental parameter values. 75% (8,245 samples) of the 
entire dataset are randomly selected as the training set, 15% (1,624 samples) are used as the 
validation set, and the remaining 10% (1,089 samples) are used as the test set. AEs generated 
from the generative network 𝐆𝐆 are incorporated into the training set. For the test set, the 
number of samples in malware class 5 (simda) is particularly small (only four samples). 
Therefore, for class 5, ten samples are used as an exception.  
In addition, the BIG2015 dataset used in the experiment has a class imbalance issue that could 
compromise the GAN’s training process. If the generator 𝐆𝐆 is not optimally trained due to the 
unbalanced dataset, it often focuses on generating images that belong to classes with a large 
number of samples. This is a natural consequence of the definition of the loss function [24]. If 
we use too much training data, the GAN faces computational complexity issues. On the other 
hand, the quality of AEs is not guaranteed making the construction of the data set a delicate 

Fig. 6. The architecture of our proposed conditional DCGAN model. 
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trade-off. We randomly select 32 images for each malware class within the training set. The 
reason for selecting 32 images for each class is that in the case of class 5 with the smallest  
number of samples, only 32 samples can be used. A GAN generally requires a sufficiently 
large dataset to conduct reliable training. To overcome the limitations of the BIG2015 dataset, 
however, we experimentally improve the performance of the GAN by elaborating on the 
architecture of the DNN and fine-tuning the parameters. Our Conditional Deep Convolutional 
GAN (CDCGAN) architecture is illustrated in Fig. 6. 

After the CDCGAN model is fully trained, it generates 𝑛𝑛(𝑛𝑛1 = 10, 𝑛𝑛2 = 20,𝑛𝑛3 = 100) AEs 
for each malware family. Combined with the training data, the generated AEs are used to 
rebuild a new DNN based classifier that is resilient against AEs. We chose the Stochastic 
Gradient Descent (SGD) optimizer for training a classifier. We used the SGD optimizer with 
a learning rate of 0.01 and a batch size of 100. We visualize the AEs using a t-distributed 
Stochastic Neighbor Embedding (t-SNE) algorithm to ensure that the generator fully learns 
the characteristics of each malware class [28]. Here, the t-SNE algorithm visualizes the 
distribution of data by reducing the dimensions of the data and shows whether clusters form 
properly or not. As revealed in Fig. 7, the generator has been trained and disentangled the 
features of each class properly. 
How we solve the overfitting problem: Since the number of training samples is not large, the 
discriminator 𝐃𝐃 of the GAN can become overfitted. If the loss of 𝐃𝐃 converges to a sufficiently 
small value and the loss of 𝐆𝐆  converges to a sufficiently high value, further training is 

Fig. 7. Visualization by the t-SNE algorithm with 100 AE images per malware family 

Fig. 8. The figure on the left shows loss in a situation where overfitting occurs while training the 
GAN, the figure on the right shows loss in a situation where GAN training progresses properly. 
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meaningless and the generator 𝐆𝐆 can no longer be improved. That is, the discriminator 𝐃𝐃 can 
clearly distinguish AEs. However, when this happens the generator 𝐆𝐆 performs poorly. This 
is why for several epochs in Fig. 8 𝐃𝐃 reaches a loss of 0.1. This means that AEs generated by 
𝐆𝐆 in this situation are not suitable for use as training data. To avoid this problem, we apply the 
DCGAN architecture and optimize 𝐆𝐆 twice after 𝐃𝐃 was optimized. Also, we tried to find the 
best optimizer for our GAN model and found that the Adam optimizer performed better than 
the SGD and RMSprop optimizers. Thus, we use the Adam optimizer to optimize 𝐃𝐃 and 𝐆𝐆 
with a learning rate of 10−4 and 10−5, respectively. The batch size was set to 96 and the model 
was trained over 2000 epochs. 

5. Performance Evaluation 

5.1 Experimental Setup  
Dataset: We use a publicly available dataset from the Microsoft Malware Classification 
Challenge (BIG 2015) provided by Kaggle. The distribution of the dataset is shown in Table 
1. Each malware sample file contains raw data consisting of a hexadecimal representation of 
the malware contents without the header. The dataset has a ground truth, i.e., each sample is 
labelled with one of the nine malware families, this is also provided by Kaggle. Interested 
readers may find more information about the data in [33]. 
 

Table 1. Applications in each class 

Family name Number of 
training samples Type 

Ramnit 1,541 Worm 
Lolipop 2,478 Adware 

Kelihos ver3 2,942 Backdoor 
Vundo 475 Trojan 
Simda 42 Backdoor 
Tracur 751 Trojan Downloader 

Kelihos ver1 398 Backdoor 
Obfuscator.ACY 1,228 Any kind of obfuscated malware 

Gatak 1,013 Backdoor 
Sum 10,868 - 

 
Performance Metrics: To examine the impact of AEs on the original classifier, we use the 
false positive rate (FPR) and true positive rate (TPR) [17] as performance metrics. We also 
consider the balanced accuracy to measure the effect of the proposed method where the 
balanced accuracy is defined as the average accuracy obtained by either class [34]. Note that 
the overall accuracy should not be used in our evaluation because it focuses on only the correct 
classification rate while the dataset used in our experiment has a significant imbalance in 
malware classes, as shown in Table 1. For example, a classification model that predicts class 
2 (Lolipop) or class 3 (Kelihos) samples well, would be judged unfairly as superior to a model 
that predicts a class 5 (Simda) sample well due to the imbalance. This may grant an 
unnecessary advantage to a model that is specialized to classify a certain malware family 
which is well represented in the data set [16]. Thus, the overall accuracy cannot be free from 
bias in this experiment. 
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In addition, we use the Receive Operating Characteristic (ROC) curve to reveal the underlying 
characteristics of our proposed scheme, with many different levels of threshold. Typically, the 
ROC curve is used to show the discrimination ability of the classifier at various threshold 
settings. The curve is drawn with the true positive rate (TPR) against the false positive rate 
(FPR). The Area Under the Curve (AUC) is a metric which attempts to summarize the ROC 
curve to evaluate the quality of a classifier. The closer the AUC is to 1, the better the classifier 
performs [35]. 
 

5.2 Results 

The impact of AEs on DNN-based classifiers: Before evaluating the performance of our 
DNN-based classifier, we show how the classification performance of a previously proposed 
scheme [1] was degraded while classifying a dataset including AEs. In Fig. 9, the figure on 
the left presents the classification results of our original malware classifier. When AEs are 
included, the performance is significantly degraded, as shown in the figure on the right of Fig. 
9. The test accuracy and the balanced test accuracy are decreased from 97.4% and 96.4% to 
71.1% and 59.2%, respectively. Additionally, the misclassification rate rises to 28.46%. The 
results show that a DNN-based malware classifier generally performs well, but even small 
perturbations can significantly degrade its performance despite the fact that AEs are 
structurally similar with clean images (See Fig. 4). This implies that DNN-based malware 
detectors are vulnerable to AEs. We now present the performance of our DNN-based malware 
classifier that leverages the generative power of a GAN and investigate the effectiveness of 
GANs against AEs. 
Mitigating performance degradation by augmenting training data: To evaluate the 
influence of data augmentation, we investigate the balanced test accuracy and FPR with 
varying numbers of AEs. For a fair comparison, we use the same DNN-architecture and hyper 
parameters. Fig. 10 and Table 2 show the results of the proposed DNN-based malware 
classifier with the data augmentation leveraging a GAN. The test accuracy, the balanced 
accuracy, and the average FPR are 75.11%, 70.16%, and 3.0%, respectively. This is the best 
result we obtained, it was achieved with a test set containing 20 AEs from each class.  

Fig. 9. Impact of AEs. Class 3 and 4 are not affected by small perturbations, but the other classes are 
highly affected, especially class 7 which was perfect before. 
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Table 2. The impact of AEs. 
Metrics/Test Baseline 𝒏𝒏𝟏𝟏=10 𝒏𝒏𝟐𝟐=20 𝒏𝒏𝟑𝟑=100 
Original - 

Accuracy(balanced) 
97.4% 

(96.4%) 
97.4% 

(95.4%) 
97.2% 

(95.2%) 
97.5% 

(95.4%) 
AEs -  

Accuracy(balanced) 
71.1% 

(59.2%) 
74.56% 

(66.78%) 
75.11% 

(70.16%) 
67.3% 

(65.41%) 
Average FPR 3.78% 2.97% 3.0% 3.8% 

 
Table 2 and Fig. 11 show that the use of more AE image samples does not necessarily mean 
a performance improvement. According to the experimental results, the FPR was higher than 
the original model only for the result that used 100 additional AE samples.  
We depict the ROC curves with varying and multiple thresholds because the ROC curves 
consider all possible thresholds. The overall or balanced accuracies are based on one specific 
cut-point (or threshold), this means that the accuracy could vary with a different cut-point. On 
the other hand, the ROC curves take into account all of the possible cut-points. As various 
thresholds result in different true positive/false positive rates, the ROC curve can show the 
detailed characteristics of the proposed scheme. In addition, the higher the AUC, the better the 
classifier’s performance. In Fig. 11, some class’ AUC increases as the number of additional 
samples increases. The average AUC of the re-trained classifier was the highest with 20 
additional samples. Compared to the original model, all re-trained models were improved, 
however, when the number of the additional samples that are incorporated into the training 
data is too large, it may affect the classifier negatively; a similar phenomenon is reported in 
[20]. This suggests a tipping point associated with the amount of added data, beyond which 
GAN augmentation degrades classifier performance rather than improves it.  

Fig. 10. Confusion Matrices with different numbers of AE per class. The center diagonal values give 
the proportion of malware images correctly classified. Other values are a proportion of malware 

images misclassified to that incorrect class. 
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Summary of findings: The main findings of this paper can be summarized as follows:  
• We observe that GAN-based data augmentation can improve a classifier’s robustness 

against AEs. However, excessive data may result in performance degradation for the 
DNN-based classifier when using a GAN. This can be explained by the fact that when 
too many additional samples are used for training, the classifier becomes more likely 
to overfit to some particular perturbation style [20].  

• We used only 32 images per class, the additional image samples generated by 𝐆𝐆 may 
not be representative of the entire data distribution. For example, sometimes the 
trained model was only improved a little (see Table 2) because there was not enough 
data to sufficiently train the GAN. The TPR and AUC of a certain class increases or 
decreases according to 𝑛𝑛 (the number of added AE image samples for that class). 
This occurs when training data is so deficient that the generator 𝐆𝐆 has been biased to 
generate only specific classes that are easy to generate, this is called mode collapse. 
Intuitively, if too many samples are generated from a biased generative network, the 
classifier will be biased too [29]. 

• The GAN augmentation method used might degrade the quality of the real images - 
even when using a conditional version of the generator. Nevertheless, according to 
the results in Table 2, the GAN’s reconstruction power shows that it is effective in 

Fig. 11. ROC curves from the classifier according to the numbers of AEs 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, November 2021                                4119 

improving the model to become much better at detecting AEs without adversely 
affecting the performance against standard malware. 

 

6. Conclusion 
In this paper, we presented a methodology to improve the robustness of DNN-based malware 
detection systems against AEs. We provided experimental evidence that a GAN can be 
successfully used as a defense mechanism against (unseen) malware variants. While 
performing our experiments, we did not use any image re-sizing as this may result in image 
feature loss. However, image down-sizing may reduce computational complexity and thus 
enable the use of more adversarial images in the training data. In our future work, we plan to 
use the entire dataset to train the GAN to further investigate the GAN’s efficacy in this task. 
Considering more sophisticated adversary models will also be part of our future work. 
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