• 제목/요약/키워드: Classification of Scheme

검색결과 839건 처리시간 0.023초

조선총독부 기록물을 위한 기능분류체계 개발 연구 (Function-Based Classification System for Public Records of Government-General of Chosun)

  • 설문원
    • 정보관리학회지
    • /
    • 제20권1호
    • /
    • pp.457-488
    • /
    • 2003
  • 조선총독부 공문서는 근대사 연구의 가장 핵심적인 정보원이다. 이 연구의 목적은 조선총독부 공문서를 원활히 활용할 수 있도록 지원하는 기능분류체계를 개발하기 위한 원칙과 단계를 제시하는 것이다. 우선, 기능적 분류체계를 위한 이론적 근거를 마련하기 위해 기록물 분류의 개념과 역할 분류 원칙에 대해 살펴보고, '기능적 출처' 개념 도입의 필요성을 제시하였다. 또한 조선총독부 공문서 분류에 왜 기능분류가 적합한지를 살펴보았고, 기능분류 사례와 그 시사점도 살펴보았다. 이러한 이론적 연구와 조선총독부 조직 및 기능 분석 결과를 토대로 조선총독부 기록물을 위한 분류체계 개발을 위한 원칙을 설정하였다. 아울러 개념화, 용어화, 기호화를 고려한 개발모형을 도출하였으며, 분류표와 함께 시소러스를 연계 구축할 수 있는 방안도 제시하였다.

글꼴 분류를 위한 한글 글꼴의 모양 특성 연구 (Shape Property Study of Hangul Font for Font Classification)

  • 김현영;임순범
    • 한국멀티미디어학회논문지
    • /
    • 제20권9호
    • /
    • pp.1584-1595
    • /
    • 2017
  • Each cultural community has developed a variety of fonts to express their own language and characters. Hangul has also diversified its font shapes through changing the composition ratio and look of the consonants and vowels. Rather, thanks to the variety of these fonts, a considerable amount of time and effort must be devoted to the selection of a specific font shape. This is related to the fact that the current Hangul service and classification system process the font only with its name or the name of the manufacturer. It means that there is no consensus about the font shape classification system for Hangul. In this study, we propose a shape property set that can be a basis for classifying Hangul fonts. The font shape property set was generated by performing statistical analysis with features which have been studied by the font design experts and was verified through questionnaire using representative fonts based on the classification scheme defined by the Hangul font design classification system standard. This study is meaningful in that it is a study on shape classification properties of K-means and PCA statistical techniques based on font data rather than design field study.

블리스(Bliss)의 서지 분류법에 관한 연구 (A Study on Bliss's Bibliographic Classification)

  • 남태우;유광연
    • 정보관리학회지
    • /
    • 제22권2호
    • /
    • pp.57-85
    • /
    • 2005
  • 비십진식 분류법에 속하는 BC는 Henry Evelyn Bliss에 의해서 창안된 것으로, 미국에서 시작되었으나 영국에서 개정되고 현재까지 사용되고 있다. BC는 지식의 분류에 근거하여 주류를 배열했기 때문에 학구적이라는 평가를 받고 있다. 또한 기존 분류 체계 중에서는 가장 완전한 분류법으로 인정받고 있다. 그러나 우수한 분류체계임에도 불구하고, 국내에서는 분류론에 조금씩 언급되어 있을 뿐 그 연구가 체계적으로 분석된 적은 없다. 따라서 본 연구에서는 BC의 창안자인 Bliss에 대한 생애 및 사상 연구를 통해 그가 분류학 분야에 끼친 영향을 분석하고자 한다. 또한 BC에 대한 역사 및 특성 연구를 통해 그 우수성과 가치를 연구하였다. 가장 학구적이라고 평가받고 있는 BC의 연구를 통해 분류학이론에 대한 논리성 및 철학성에 대한 기반을 구축할 수 있을 것이다.

정보통신망의 효율적 보안관리를 위한 비즈니스 프로세스 기반의 자산평가모델 및 방법론에 관한 연구 (A Study on Business Process Based Asset Evaluation Model and Methodology for Efficient Security Management over Telecommunication Networks)

  • 우병구;이강수;정태명
    • 정보처리학회논문지C
    • /
    • 제10C권4호
    • /
    • pp.423-432
    • /
    • 2003
  • 정보통신망의 보안관리나 위험분석시 정형화된 자산분석ㆍ평가는 필수적이지만, 기존의 위험분석 방법론 및 도구에는 자산의 분규체계만 다수 제시되어 있을 뿐 구체적인 자산파악 및 가치평가방법은 알려져 있지 않다. 또한, 기존의 자산분류체계는 주로 정보자산이 아닌 일반적인 위험평가를 위한 것이므로, 정보통신망의 정보자산에 대한 분류체계 및 자산가치 평가방법으로는 부적합하다. 특히, 자산평가시의 평가자의 주관성 문제를 해결하는 구체적인 방법이 제시되어있지 못하다. 본 논문에서는 이러한 문제점들을 해결하기 위해, 정형화된 자산평가모델의 정의, 새로운 자산분류스키마, 업무처리(BP)와 자산을 고려한 2차원적 자산업무분류스키마, 다양한 정량가치와 정성가치의 평가방법을 제시하고 특히 무형자산 평가시의 평가자의 주관성 문제의 단점을 보완할 수 있는 베타분포형 델파이 방법은 제안하고자 한다.

UDC 표준판의 구조적 특성 분석 (An Analysis of the Structural Characteristics of the UDC Standard Edition)

  • 이창수
    • 한국도서관정보학회지
    • /
    • 제39권3호
    • /
    • pp.299-320
    • /
    • 2008
  • 이 연구는 MRF(Master Reference File)를 바탕으로 2005년에 영국의 BSI(British Standards Institution) 에서 인쇄 형태로 출판한 UDC(Universal Decimal Classification)의 표준판(Standard edition)을 대상으로 그 성립배경과 구조적 특성을 분석하고, 한국어 간략판과 비교하였다. UDC는 다른 십진식분류표에 대비하여 독특한 구조적 특성이 있으며, 한국어 간략판과 비교하여 볼 때 국제적 보편성을 더욱 강화하였고, 보조표를 통한 조합의 방식이 더욱 확대되었다. 이 연구를 바탕으로 앞으로의 KDC(Korean Decimal Classification)의 개정에 있어서 참고가 될 만한 KDC MRF 데이터베이스 개발과 보조표의 개선과 새로운 신설을 제언하였다.

  • PDF

분류체계 일치를 통한 과학기술정보 상호 교환 방법에 관한 기초 연구 (A Preliminary Study on Interchange of Science and Technology Information through Harmonization of Classification Schemes)

  • 홍성화;서태설
    • 정보관리연구
    • /
    • 제35권3호
    • /
    • pp.109-123
    • /
    • 2004
  • 과학기술정보의 의미적 상호운용성 문제는 빈번하게 발생한다. 잘 만들어진 분류체계는 상이한 데이터베이스 간에 의미상 불일치 없이 정보를 교환하기 위한 도구로 사용될 것이다. 하지만 각 데이터베이스가 취하고 있는 분류체계가 상이함으로 인해서 여전히 현실적인 장벽이 존재한다. 따라서 분류체계간의 일치 및 조화는 매우 시급한 문제이다. 본 논문의 목표는 다른 분류체계('국가과학기술표준분류'와 'KISTI 표준 분류')를 갖는 데이터베이스간의 정보 교환 시에 발생할 수 있는 의미적 불일치를 해결하는 것이다. 이를 위해서 과학기술의 개념적 체계 분석을 수행하였고 다섯가지의 일치/불일치 유형을 사례에 기반하여 분석하였다.

Improving classification of low-resource COVID-19 literature by using Named Entity Recognition

  • Lithgow-Serrano, Oscar;Cornelius, Joseph;Kanjirangat, Vani;Mendez-Cruz, Carlos-Francisco;Rinaldi, Fabio
    • Genomics & Informatics
    • /
    • 제19권3호
    • /
    • pp.22.1-22.5
    • /
    • 2021
  • Automatic document classification for highly interrelated classes is a demanding task that becomes more challenging when there is little labeled data for training. Such is the case of the coronavirus disease 2019 (COVID-19) clinical repository-a repository of classified and translated academic articles related to COVID-19 and relevant to the clinical practice-where a 3-way classification scheme is being applied to COVID-19 literature. During the 7th Biomedical Linked Annotation Hackathon (BLAH7) hackathon, we performed experiments to explore the use of named-entity-recognition (NER) to improve the classification. We processed the literature with OntoGene's Biomedical Entity Recogniser (OGER) and used the resulting identified Named Entities (NE) and their links to major biological databases as extra input features for the classifier. We compared the results with a baseline model without the OGER extracted features. In these proof-of-concept experiments, we observed a clear gain on COVID-19 literature classification. In particular, NE's origin was useful to classify document types and NE's type for clinical specialties. Due to the limitations of the small dataset, we can only conclude that our results suggests that NER would benefit this classification task. In order to accurately estimate this benefit, further experiments with a larger dataset would be needed.

도로표지 정보 활용을 위한 도로표지 인식 및 지오콘텐츠 생성 기법 (Road Sign Recognition and Geo-content Creation Schemes for Utilizing Road Sign Information)

  • 성택영;문광석;이석환;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.252-263
    • /
    • 2016
  • Road sign is an important street furniture that gives some information such as road conditions, driving direction and condition for a driver. Thus, road sign is a major target of image recognition for self-driving car, ADAS(autonomous vehicle and intelligent driver assistance systems), and ITS(intelligent transport systems). In this paper, an enhanced road sign recognition system is proposed for MMS(Mobile Mapping System) using the single camera and GPS. For the proposed system, first, a road sign recognition scheme is proposed. this scheme is composed of detection and classification step. In the detection step, object candidate regions are extracted in image frames using hybrid road sign detection scheme that is based on color and shape features of road signs. And, in the classification step, the area of candidate regions and road sign template are compared. Second, a Geo-marking scheme for geo-content that is consist of road sign image and coordinate value is proposed. If the serious situation such as car accident is happened, this scheme can protect geographical information of road sign against illegal users. By experiments with test video set, in the three parts that are road sign recognition, coordinate value estimation and geo-marking, it is confirmed that proposed schemes can be used for MMS in commercial area.

얼굴 특징점 추적을 통한 사용자 감성 인식 (Emotion Recognition based on Tracking Facial Keypoints)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제18권1호
    • /
    • pp.97-101
    • /
    • 2019
  • Understanding and classification of the human's emotion play an important tasks in interacting with human and machine communication systems. This paper proposes a novel emotion recognition method by extracting facial keypoints, which is able to understand and classify the human emotion, using active Appearance Model and the proposed classification model of the facial features. The existing appearance model scheme takes an expression of variations, which is calculated by the proposed classification model according to the change of human facial expression. The proposed method classifies four basic emotions (normal, happy, sad and angry). To evaluate the performance of the proposed method, we assess the ratio of success with common datasets, and we achieve the best 93% accuracy, average 82.2% in facial emotion recognition. The results show that the proposed method effectively performed well over the emotion recognition, compared to the existing schemes.

개선된 휴리스틱 규칙 및 의사 결정 트리 분석을 이용한 P2P 트래픽 분류 기법 (P2P Traffic Classification using Advanced Heuristic Rules and Analysis of Decision Tree Algorithms)

  • 예우지엔;조경산
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.45-54
    • /
    • 2014
  • 본 논문에서는 기존 기법들의 제한점을 개선하기 위해 휴리스틱 규칙 및 기계학습 분석 결과를 이용한 두 단계의 P2P 트래픽 분류 기법을 제안한다. 첫 번째 단계는 패킷 레벨의 시그니처 기반 분류기이고, 두 번째 단계는 플로우 레벨에서 수행되는 패턴 휴리스틱 규칙 및 통계 기반 분류기이다. 제안된 패턴 휴리스틱 규칙은 분류의 정확도를 높이고 통계 기반 분류기가 처리할 트래픽의 양을 줄일 수 있다. 다양한 의사 결정 트리 알고리즘의 분석을 기반으로 통계 기반 분류기는 가장 효율적인 REPTree로 구현하고, 앙상블 알고리즘을 통해 통계 기반 분류기의 성능을 개선한다. 실제 환경의 데이터 집합을 이용한 검증 분석을 통해, 본 제안 기법이 기존 기법에 비해 높은 정확도와 낮은 과부하를 제공함을 제시한다.