본 논문에서는 항공 라이다 데이터를 이용하여 지형의 유형을 분류하는 과정에서 지형의 특성에 따라 지형 분류의 판정 단위를 가변적으로 변화시키는 동적 가변 윈도우 기반 지형 분류 기법을 제안한다. 제안된 동적 가변 윈도우 기반 지형 분류 기법에서는 지형의 특성과 반복 패턴에 따라 지형 분류의 판정 단위를 가변적으로 결정하여 지형 분류에 소요되는 시간을 감소시키고자 하였다. 또한, 본 논문에서는 실험을 통하여 동적 가변 윈도우 기반 지형 분류 기법의 시간효율과 정확도를 분석하고 최적의 최대 판정 윈도우 크기를 제시하였다. 실험 결과에 따르면 제안된 동적 가변 윈도우 기반 지형 분류 기법은 고정 윈도우 크기를 이용하는 기법과 유사한 정도의 정확성을 유지하면서도 빠른 지형 분류가 가능한 것으로 판명되었다.
In this paper, we propose and apply new classification method to the remotely sensed image acquired from airborne multi-spectral scanner. This is a neuro-fuzzy image classifier derived from the generic model of a 3-layer fuzzy perceptron. We implement a classification software system with the proposed method for land cover image classification. Comparisons with the proposed and maximum-likelihood classifiers are also presented. The results show that the neuro-fuzzy classification method classifies more accurately than the maximum likelihood method. In comparing the maximum-likelihood classification map with the neuro-fuzzy classification map, it is apparent that there is more different as amount as 7.96% in the overall accuracy. Most of the differences are in the "Building" and "Pine tree", for which the neuro-fuzzy classifier was considerably more accurate. However, the "Bare soil" is classified more correctly with the maximum-likelihood classifier rather than the neuro-fuzzy classifier.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권7호
/
pp.2261-2280
/
2014
Recently, network traffic has become more complex and diverse due to the emergence of new applications and services. Therefore, the importance of application-level traffic classification is increasing rapidly, and it has become a very popular research area. Although a lot of methods for traffic classification have been introduced in literature, they have some limitations to achieve an acceptable level of performance in real-time application-level traffic classification. In this paper, we propose a novel application-level traffic classification method using payload size sequence (PSS) signature. The proposed method generates unique PSS signatures for each application using packet order, direction and payload size of the first N packets in a flow, and uses them to classify application traffic. The evaluation shows that this method can classify application traffic easily and quickly with high accuracy rates, over 99.97%. Furthermore, the method can also classify application traffic that uses the same application protocol or is encrypted.
원격탐사의 장점 중 하나는 넓은 지역의 정량적이고 정성적인 정보를 신속하게 추출할 수 있는 것이다. 그것은 넓은 지역의 토지피복을 분류하여 자원 및 환경을 신속하고 정확하게 파악하는 효과적인 수단이다. 따라서 본 연구에서는 알고리즘 개발을 통하여 더 나은 토지피복분류 방법을 제시하고자 하였다. 연구내용으로는 정형화된 토지피복분류방법인 최대우도법을 수행하고, 새로운 FCM 알고리즘을 이용한 영상분류를 수행하여 두 방법의 분류정확도를 비교 평가하였다. 또한 이용된 영상들은 한국항공우주연구원에서 매일 실시간으로 수신하고 있기 때문에 시간과 비용면에서 경제적인 위성영상을 이용하였다. 해상력은 다소 떨어지는 다파장대(36개 bands)의 MODIS 위성영상과 단 밴드인 KOMPSAT-1 EOC 위성영상을 이용하여 중합영상을 생성하여 토지피복분류에 이용하였다.
본 논문은 자동화된 분류시스템의 성능향상을 위한 것으로 오분류율이 높은 불확실성이 강한 문서들의 범주결정방식을 개선하기 위한 후처리분석 방법과 피드백 알고리즘을 제안한다. 전통적인 분류시스템에서 분류의 정확성을 결정하는 요인으로 학습방법과 분류모델, 그리고 데이터의 특성을 들 수 있다. 특성들이 일부 공유되어 있거나 다의적인 특성들이 풍부한 문서들의 분류문제는 정형화된 데이터들에서 보다 심화된 분석과정이 요구된다. 특히 단순히 최상위 항목으로 지정하는 기존의 결정방법이 분류의 정확도를 저하시키는 직접적인 요인이 되므로 학습방법의 개선과 함께 분류모델을 적용한 이후의 결과 값인 순위정보 리스트의 관계를 분석하는 작업이 필요하다. 본 연구에서는 경계범주의 자동탐색기법으로 확장된 학습체계를 제안한 이전 연구의 후속작업으로써, 최종 범주를 결정하기까지의 후처리분석 방법과 이전의 학습단계로 피드백하여 신뢰성을 높일 수 있는 알고리즘을 제안하고 있다. 실험결과에서는 제안된 범주결정방식을 적용한 후 1회의 피드백을 수행하였을 때의 결과들을 단계적이고 종합적으로 분석함으로써 본 연구의 타당성과 정확성을 보인다.
이메일 사용이 보편화됨에 따라 점차 수신되는 메일의 량이 증가하고 있다. 이러한 메일 량의 증가는 사용자로 하여금 이메일을 좀더 효율적으로 분류할 수 있는 방법을 필요하게 한다. 그러나 현재의 이메일 분류는 규칙기반, 베이시안, SVM등을 이용하여 스팸메일을 필터링 하는 이원분류가 주로 연구되고 있다. 이외에도 다원분류에 대한 연구로는 클러스터링을 이용한 방법이 있으나, 이는 단순히 유사도에 의해 메일을 그룹화 하는 수준이다. 본 논문에서는 벡터모델의 유사도를 기반으로 한 자동 카테고리 생성 방법과 동적분류체계 방법을 결합하여 새로운 이메일 자동 분류 방법을 제안했다. 본 논문에서 제안한 방법은 이메일을 자동으로 다원분류하며 대량의 메일도 효율적으로 관리할 수 있다. 또한 메일을 동적으로 재분류 할 수 있게 함으로써 정확율을 높였다.
본 논문에서는 피셔 선형 분리(FLD, Fisher's Linear Discriminant) 기반의 단계적 분류를 이용한 감성 인식 기법을 제안한다. 제안하는 기법은 2종 이상의 감성에 대한 다중 클래스 분류 문제에 대하여, 이진 분류 모델의 연속적인 결합을 통해 단계적 분류 모델을 구성함으로써 복잡도 높은 특징 공간상의 다수의 감성 클래스에 대한 분류 성능을 향상시킨다. 이를 위하여, 각 계층 단계의 학습에서는 감성 클래스들로 이루어진 두 개의 클래스 그룹에 따라 피셔 선형분리 공간을 구성하며, 구성된 공간상에서 Adaboost 방식을 이용하여 이진 분류 모델을 학습하여 생성한다. 각 계층 단계의 학습 과정은 모든 감성 클래스가 구분이 완료되는 시점까지 반복 수행된다. 본 논문에서는 MIT 생체 신호 프로파일을 이용하여 제안하는 기법을 실험하였다. 실험 결과, 8종의 감성에 대한 분류 실험을 통해 약 72%의 분류 성능을 확인하였고, 특정 3종의 감성에 대한 분류 실험을 통해 약 93% 분류 성능을 확인하였다.
본 연구는 위성영상 자료(2000-2009)를 이용하여 성남-용인 인근지역의 지표변화를 시계열 분석하기 위해 규칙기반 영상분류 방법을 제안하였다. 도시지역의 연도별 변화 패턴을 파악하기 위해 통계적/수학적 기반의 규칙에 따라 11개 클래스로 구분하였다. 훈련지역을 설정하지 않는 무감독분류 방법으로서 규칙을 적용할 수 있도록 알고리즘을 일반화 하였다. 분석 결과, 택지개발 등에 의하여 연구범위 내 도시지역면적이 약 1.45배 증가하였으며, 2009년 영상의 분류정확도는 98%로 나타났다. 방법 검증을 위하여 선분류 후비교법을 이용한 토지피복 변화분석 결과와 비교하였다. 다중영상 내 가용한 데이터를 최대한 이용할 수 있었고, 목적에 최적화된 분류가 가능해져, 분류정확도의 향상을 기대할 수 있었다. 본 규칙기반 영상분류 방법은 향후 도시개발 주제도 제작 및 도시개발, 환경변화 모니터링 등 영상 시계열 분석에 다양하게 적용될 수 있을 것이다.
Kim, Yong-Min;Kim, Yong-Il;Park, Wan-Yong;Eo, Yang-Dam
대한원격탐사학회지
/
제26권3호
/
pp.317-324
/
2010
In recent years, many automatic classification approaches have been employed. An automatic classification method can be effective, time-saving and can produce objective results due to the exclusion of operator intervention. This paper proposes a classification method based on automated training for high resolution multispectral images using ancillary data. Generally, it is problematic to automatically classify high resolution images using ancillary data, because of the scale difference between the high resolution image and the ancillary data. In order to overcome this problem, the proposed method utilizes the classification results of a Landsat image as a medium for automatic classification. For the classification of a Landsat image, a maximum likelihood classification is applied to the image, and the attributes of ancillary data are entered as the training data. In the case of a high resolution image, a K-means clustering algorithm, an unsupervised classification, was conducted and the result was compared to the classification results of the Landsat image. Subsequently, the training data of the high resolution image was automatically extracted using regular rules based on a RELATIONAL matrix that shows the relation between the two results. Finally, a high resolution image was classified and updated using the extracted training data. The proposed method was applied to QuickBird and SPOT-5 images of non-accessible areas. The result showed good performance in accuracy assessments. Therefore, we expect that the method can be effectively used to automatically construct thematic maps for non-accessible areas and update areas that do not have any attributes in geographic information system.
The purpose of this paper is to propose a new binary classification method for predicting corporate failure based on genetic algorithm, and to validate its prediction power through empirical analysis. Establishing virtual companies representing bankrupt companies and non-bankrupt ones respectively, the proposed method measures the similarity between the virtual companies and the subject for prediction, and classifies the subject into either bankrupt or non-bankrupt one. The values of the classification variables of the virtual companies and the weights of the variables are determined by the proper model to maximize the hit ratio of training data set using genetic algorithm. In order to test the validity of the proposed method, we compare its prediction accuracy with ones of other existing methods such as multi-discriminant analysis, logistic regression, decision tree, and artificial neural network, and it is shown that the binary classification method we propose in this paper can serve as a premising alternative to the existing methods for bankruptcy prediction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.