The purpose of the study was to develop a classification of management for the qualitative improvement of the management of multi-family housing. The date were analyzed using the Excel program in terms of frequency and, criticality analysis in order to draw items stage by stage. The process of research was as follows: The first process drew classification of types using the content analysis of the documented studies. The second process examined subcategories according to classification of types via interviews of supervisors. Further, the criticality analysis between the two items was examined. Additionally, when this study surveys and analyzes the satisfactions and importance of management on the basis of the classification, it can have an effect on management by reflecting the result. In conclusion, the classification of the management of multi-family housing will make up the improvement scheme of supplement education, certification related management and management regulations on the characteristics of multi-family housing by types of houses in the future.
Subject classification of journals is important because it can be utilized for the improvement of scholarly information services and analysis by research area. The classification by experts in a subject area wastes a lot of time and expense. On the other hand, the simple classification with basic information, such as the journal title has limitations. To solve this problem, this paper suggests the automatic classification of Korean journals using the SCI journals information cited by Korean journals, and an analysis of the classification result. In particular, this study adopted the WoS subject categories for classification to support the base for comparison between the Korean citation database and the global citation database (KSCI vs. SCI).
This study suggests integrated neural network models for Interest rate forecasting using change-point detection, classifiers, and classification functions based on structural change. The proposed model is composed of three phases with tee-staged learning. The first phase is to detect successive and appropriate structural changes in interest rare dataset. The second phase is to forecast change-point group with classifiers (discriminant analysis, logistic regression, and backpropagation neural networks) and their. combined classification functions. The fecal phase is to forecast the interest rate with backpropagation neural networks. We propose some classification functions to overcome the problems of two-staged learning that cannot measure the performance of the first learning. Subsequently, we compare the structured models with a neural network model alone and, in addition, determine which of classifiers and classification functions can perform better. This article then examines the predictability of the proposed classification functions for interest rate forecasting using structural change.
Classification methods based on dual energy X-ray absorptiometry, ultrasonic waves, and quantitative computed tomography have been proposed. Also, a classification method based on machine learning with bone mineral density and structural indicators extracted from the CT images has been proposed. We propose a method which enhances the performance of existing classification method based on bone mineral density and structural indicators by extending structural indicators and using principal component analysis. Experimental result shows that the proposed method in this paper improves the correctness of osteoporosis classification 2.8% with extended structural indicators only and 4.8% with both extended structural indicators and principal component analysis. In addition, this paper proposes a method of automatic phantom analysis needed to convert the CT values to BMD values. While existing method requires manual operation to mark the bone region within the phantom, the proposed method detects the bone region automatically by detecting circles in the CT image. The proposed method and the existing method gave the same conversion formula for converting CT value to bone mineral density.
업무과정을 철저하게 기록화하기 위해서는 업무관리와 기록관리가 통합적으로 이루어져야 한다. 이를 위해 업무분류표와 기록분류표를 통합한 기록분류체계 수립이 적합하지만, 지금까지 기록분류체계 수립을 위해 이용된 절차 및 방법론들은 일반조직, 단체 등에서 지침으로 활용하거나 분석을 수행하기에는 구체성이 부족하다. 본 연구에서는 이러한 인식을 바탕으로 업무관리와 기록 관리를 유기적으로 연계시킬 수 있는 기록분류체계 개발을 위해 다음과 같이 방법을 구체화 하였다. 우선 기록분류체계 개발을 위한 분류의 원칙으로 기능분류를 선택하였다. 그 다음으로 기록분류체계 개발을 위해 구체적인 방법을 제시하였다. 이를 위해 호주의 기록관리 업무분석 표준인 DIRKS(Designing and Implementing Recordkeeping Systems)와 AS 5090을 분석, 비교 하였고, 이를 토대로 정보공학과 경영학에서 업무분석시 사용되는 방법론과 보완할 부분을 연구하여 구체적인 기록분류체계 개발 방법을 제시했다. 이와 같이 구체화한 기록분류체계 설계를 위한 개발 모형을 친일반민족행위진상규명위원회에 적용하여 검증하였다는데 본 연구의 그 의의가 있다.
본 논문에서는 사상체질분류검사 설문지를 이용하여 사상체질을 진단할 때 진단의 정확도를 향상시키기 위한 사상체질 분류모형을 개발하기 위하여 데이터마이닝의 주요 분류기법인 판별분석(discriminant analysis), 의사결정나무(decision tree analysis), 신경망분석(neural network analysis), 로지스틱 회귀분석(logistic regression analysis), 군집분석(clustering analysis) 등 다양한 분류분석모형을 이용한다. 본 연구에서는 분류의 비교적 정확도가 우수하며, 특히 분석과정을 쉽게 이해하고 설명할 수 있다는 점과 구현이 용이하다는 장점을 가지고 있는 판별분석모형과 의사결정나무분석모형을 기반으로 사상체질 분류모형을 개발하고, 두 분류모형을 적용한 사상체질 진단시스템을 구현하였다.
본 연구는 위성영상 자료(2000-2009)를 이용하여 성남-용인 인근지역의 지표변화를 시계열 분석하기 위해 규칙기반 영상분류 방법을 제안하였다. 도시지역의 연도별 변화 패턴을 파악하기 위해 통계적/수학적 기반의 규칙에 따라 11개 클래스로 구분하였다. 훈련지역을 설정하지 않는 무감독분류 방법으로서 규칙을 적용할 수 있도록 알고리즘을 일반화 하였다. 분석 결과, 택지개발 등에 의하여 연구범위 내 도시지역면적이 약 1.45배 증가하였으며, 2009년 영상의 분류정확도는 98%로 나타났다. 방법 검증을 위하여 선분류 후비교법을 이용한 토지피복 변화분석 결과와 비교하였다. 다중영상 내 가용한 데이터를 최대한 이용할 수 있었고, 목적에 최적화된 분류가 가능해져, 분류정확도의 향상을 기대할 수 있었다. 본 규칙기반 영상분류 방법은 향후 도시개발 주제도 제작 및 도시개발, 환경변화 모니터링 등 영상 시계열 분석에 다양하게 적용될 수 있을 것이다.
인터넷 사용의 보편화로 이메일의 양이 급속히 증가하고 있다. 따라서 수신 메일을 효율적이면서 정확하게 분류할 필요성이 점차 증가하고 있다. 현재의 이메일 분류는 베이지안, 규칙 기반 등을 이용하여 스팸 메일을 필터링하기 위한 이원 분류가 주를 이루고 있다. 클러스터링을 이용한 다원 분류 방법은 분류의 정확도가 떨어지는 단점이 있다. 본 논문에서는 주성분 분석(PCA, Principal Component Analysis)을 기반으로 한 자동 카테고리 생성 방법과 동적 분류 체계 방법을 결합한 새로운 자동 이메일 분류 방법을 제안한다. 이 방법은 수신되는 이메일을 자동으로 분류하여 대량의 메일을 효율적으로 관리할 수 있으며, 메일을 동적으로 재분류 하여 분류 정확률을 높일 수 있다.
Communications for Statistical Applications and Methods
/
제17권4호
/
pp.527-540
/
2010
규칙기반 분류분석(rule-based classification analysis)은 직관적인 이해가 쉽고 알고리즘이 복잡하지 않아 최근 대용량 데이터마이닝에 많이 이용되는 기법이다. 하지만 현재의 규칙기반 분석은 여러 개의 규칙들을 찾은후 이 규칙들을 단순히 다수결이나 또는 중요도의 가중 합으로서 새로운 데이터를 분류한다. 본 연구에서는 다항분포를 이용한 이항데이터의 분류분석 기법을 규칙 조합방법에 응용하고자한다. 다향분포의 추정을 위해서는 변형된 반복 비율 적합(iterative proportional fitting; IPF) 알고리즘을 이용하여 최대 엔트로피 분포(entropy distribution)를 찾는다. 시뮬레이션 실험 결과 이 방법은 두 집단의 데이터가 서로 유사한 경우 어느 정도 의미 있는 분류 결과를 보여주였다.
In order to manage the water quality in reservoir, it is necessary to understand the temporal and spatial variation of reservoirs and to classify the reservoirs. In this research, agricultural reservoirs are classified according to physical characteristics (depth, residence time, shape of the reservoir etc) and water quality using multivatriate analysis (PCA and CA). CA (Cluster Analysis) method classify reservoirs into several groups as a similarity of the reservoirs, but it is difficult to indicate a full list to the one table. In case of PCA (Principle Component Analysis) method, it has the advantage for the classification on the reservoirs depending on the water quality similarity and also it is useful to analyze the relationship between related factors through correlation analysis. However PCA is limited to classify into several groups based on the characteristics of the reservoirs and each user should be classified as randomly subjective according to the relative position of the reservoir in the figure. In conclusions, compared to conventional reservoirs classification methods, both CA and PCA methods are considered to be a classification method that describes the nature of the reservoir well, but classification results has a restriction on use, so further research will be needed to complement.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.