• Title/Summary/Keyword: Classification accuracy assessment

Search Result 173, Processing Time 0.022 seconds

Spatial Replicability Assessment of Land Cover Classification Using Unmanned Aerial Vehicle and Artificial Intelligence in Urban Area (무인항공기 및 인공지능을 활용한 도시지역 토지피복 분류 기법의 공간적 재현성 평가)

  • Geon-Ung, PARK;Bong-Geun, SONG;Kyung-Hun, PARK;Hung-Kyu, LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.63-80
    • /
    • 2022
  • As a technology to analyze and predict an issue has been developed by constructing real space into virtual space, it is becoming more important to acquire precise spatial information in complex cities. In this study, images were acquired using an unmanned aerial vehicle for urban area with complex landscapes, and land cover classification was performed object-based image analysis and semantic segmentation techniques, which were image classification technique suitable for high-resolution imagery. In addition, based on the imagery collected at the same time, the replicability of land cover classification of each artificial intelligence (AI) model was examined for areas that AI model did not learn. When the AI models are trained on the training site, the land cover classification accuracy is analyzed to be 89.3% for OBIA-RF, 85.0% for OBIA-DNN, and 95.3% for U-Net. When the AI models are applied to the replicability assessment site to evaluate replicability, the accuracy of OBIA-RF decreased by 7%, OBIA-DNN by 2.1% and U-Net by 2.3%. It is found that U-Net, which considers both morphological and spectroscopic characteristics, performs well in land cover classification accuracy and replicability evaluation. As precise spatial information becomes important, the results of this study are expected to contribute to urban environment research as a basic data generation method.

Assessing the Extent and Rate of Deforestation in the Mountainous Tropical Forest

  • Pujiono, Eko;Lee, Woo-Kyun;Kwak, Doo-Ahn;Lee, Jong-Yeol
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.315-328
    • /
    • 2011
  • Landsat data incorporated with additional bands-normalized difference vegetation index (NDVI) and band ratios were used to assess the extent and rate of deforestation in the Gunung Mutis Nature Reserve (GMNR), a mountainous tropical forest in Eastern of Indonesia. Hybrid classification was chosen as the classification approach. In this approach, the unsupervised classification-iterative self-organizing data analysis (ISODATA) was used to create signature files and training data set. A statistical separability measurement-transformed divergence (TD) was used to identify the combination of bands that showed the highest distinction between the land cover classes in training data set. Supervised classification-maximum likelihood classification (MLC) was performed using selected bands and the training data set. Post-classification smoothing and accuracy assessment were applied to classified image. Post-classification comparison was used to assess the extent of deforestation, of which the rate of deforestation was calculated by the formula suggested by Food Agriculture Organization (FAO). The results of two periods of deforestation assessment showed that the extent of deforestation during 1989-1999 was 720.72 ha, 0.80% of annual rate of deforestation, and its extent of deforestation during 1999-2009 was 1,059.12 ha, 1.31% of annual rate of deforestation. Such results are important for the GMNR authority to establish strategies, plans and actions for combating deforestation.

The Classification Algorithm of Users' Emotion Using Brain-Wave (뇌파를 활용한 사용자의 감정 분류 알고리즘)

  • Lee, Hyun-Ju;Shin, Dong-Il;Shin, Dong-Kyoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.2
    • /
    • pp.122-129
    • /
    • 2014
  • In this study, emotion-classification gathered from users was performed, classification-experiments were then conducted using SVM(Support Vector Machine) and K-means algorithm. Total 15 numbers of channels; CP6, Cz, FC2, T7. PO4, AF3, CP1, CP2, C3, F3, FC6, C4, Oz, T8 and F8 among 32 members of the channels measured were adapted in Brain signals which indicated obvious the classification of emotions in previous researches. To extract emotion, watching DVD and IAPS(International Affective Picture System) which is a way to stimulate with photos were applied and SAM(Self-Assessment Manikin) was used in emotion-classification to users' emotional conditions. The collected users' Brain-wave signals gathered had been pre-processing using FIR filter and artifacts(eye-blink) were then deleted by ICA(independence component Analysis) using. The data pre-processing were conveyed into frequency analysis for feature extraction through FFT. At last, the experiment was conducted suing classification algorithm; Although, K-means extracted 70% of results, SVM showed better accuracy which extracted 71.85% of results. Then, the results of previous researches adapted SVM were comparatively analyzed.

Statistical Approach to Noisy Band Removal for Enhancement of HIRIS Image Classification

  • Huan, Nguyen Van;Kim, Hak-Il
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.195-200
    • /
    • 2008
  • The accuracy of classifying pixels in HIRIS images is usually degraded by noisy bands since noisy bands may deform the typical shape of spectral reflectance. Proposed in this paper is a statistical method for noisy band removal which mainly makes use of the correlation coefficients between bands. Considering each band as a random variable, the correlation coefficient measures the strength and direction of a linear relationship between two random variables. While the correlation between two signal bands is high, existence of a noisy band will produce a low correlation due to ill-correlativeness and undirectedness. The application of the correlation coefficient as a measure for detecting noisy bands is under a two-pass screening scheme. This method is independent of the prior knowledge of the sensor or the cause resulted in the noise. The classification in this experiment uses the unsupervised k-nearest neighbor algorithm in accordance with the well-accepted Euclidean distance measure and the spectral angle mapper measure. This paper also proposes a hierarchical combination of these measures for spectral matching. Finally, a separability assessment based on the between-class and within-class scatter matrices is followed to evaluate the performance.

  • PDF

Extraction of Spatial Characteristics of Cadastral Land Category from RapidEye Satellite Images

  • La, Phu Hien;Huh, Yong;Eo, Yang Dam;Lee, Soo Bong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.581-590
    • /
    • 2014
  • With rapid land development, land category should be updated on a regular basis. However, manual field surveys have certain limitations. In this study, attempts were made to extract a feature vector considering spectral signature by parcel, PIMP (Percent Imperviousness), texture, and VIs (Vegetation Indices) based on RapidEye satellite image and cadastral map. A total of nine land categories in which feature vectors were significantly extracted from the images were selected and classified using SVM (Support Vector Machine). According to accuracy assessment, by comparing the cadastral map and classification result, the overall accuracy was 0.74. In the paddy-field category, in particular, PO acc. (producer's accuracy) and US acc. (user's accuracy) were highest at 0.85 and 0.86, respectively.

Land Suitability Assessment by Combining Classification Results by Climate and Soil Information Using the Most Limiting Characteristic Method in the Republic of Korea (기후 및 토양 정보에서 최대저해인자법을 이용한 재배적지 구분의 통합에 관한 연구)

  • Kim, Hojung;Shim, Kyomoon;Hyun, Byungkeun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.3
    • /
    • pp.127-134
    • /
    • 2016
  • Land suitability assessment for apples and pears was conducted with soil and climate information in South Korea. In doing so, we intended to preserve land and increase the productivity by providing valuable information regarding where more suitable areas for apples or pears are located. We used soil classification driven by soil environmental information system developed by National Institute of Agricultural Science, RDA, and also used climate classification in digital agro-climate map database for which is made by National Institute of Horticultural and Herbal Science. We combined both soil and climate classification results using a most-limiting characteristic method. The combined results showed very similar patterns with the results by classification based on soil information. Such results seem to come from the fact that the classification results by soil relatively lower than those by climate information. The results by soil classification seem to be too downgraded and checking if the final classification ranges in soil are reasonably made is strongly required. Although the most limiting characteristic method had been used widely in land suitability assessment, adapting the method based on results by soil and climate can be influenced by one downgraded factor. Therefore, alternative ways should be carefully considered for increasing the accuracy.

A Study of Land-Cover Classification Technique for Merging Image Using Fuzzy C-Mean Algorithm (Fuzzy C-Mean 알고리즘을 이용한 중합 영상의 토지피복분류기법 연구)

  • 신석효;안기원;양경주
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.2
    • /
    • pp.171-178
    • /
    • 2004
  • The advantage of the remote sensing is extraction the information of wide area rapidly. Such advantage is the resource and environment are quick and efficient method to grasps accurately method through the land cover classification of wide area. Accordingly this study was presented more better land cover classification method through an algorithm development. We accomplished FCM(Fuzzy C-Mean) classification technique with MLC (Maximum Likelihood classification) technique to be general land cover classification method in the content of research. And evaluated the accuracy assessment of two classification method. This study is used to the high-resolution(6.6m) Electro-Optical Camera(EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1(KOMPSAT-1) and the multi-spectral Moderate Resolution Imaging Spectroradiometer(MODIS) image data(36 bands).

A comparative assessment of bagging ensemble models for modeling concrete slump flow

  • Aydogmus, Hacer Yumurtaci;Erdal, Halil Ibrahim;Karakurt, Onur;Namli, Ersin;Turkan, Yusuf S.;Erdal, Hamit
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.741-757
    • /
    • 2015
  • In the last decade, several modeling approaches have been proposed and applied to estimate the high-performance concrete (HPC) slump flow. While HPC is a highly complex material, modeling its behavior is a very difficult issue. Thus, the selection and application of proper modeling methods remain therefore a crucial task. Like many other applications, HPC slump flow prediction suffers from noise which negatively affects the prediction accuracy and increases the variance. In the recent years, ensemble learning methods have introduced to optimize the prediction accuracy and reduce the prediction error. This study investigates the potential usage of bagging (Bag), which is among the most popular ensemble learning methods, in building ensemble models. Four well-known artificial intelligence models (i.e., classification and regression trees CART, support vector machines SVM, multilayer perceptron MLP and radial basis function neural networks RBF) are deployed as base learner. As a result of this study, bagging ensemble models (i.e., Bag-SVM, Bag-RT, Bag-MLP and Bag-RBF) are found superior to their base learners (i.e., SVM, CART, MLP and RBF) and bagging could noticeable optimize prediction accuracy and reduce the prediction error of proposed predictive models.

Discrimination of Three Emotions using Parameters of Autonomic Nervous System Response

  • Jang, Eun-Hye;Park, Byoung-Jun;Eum, Yeong-Ji;Kim, Sang-Hyeob;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.705-713
    • /
    • 2011
  • Objective: The aim of this study is to compare results of emotion recognition by several algorithms which classify three different emotional states(happiness, neutral, and surprise) using physiological features. Background: Recent emotion recognition studies have tried to detect human emotion by using physiological signals. It is important for emotion recognition to apply on human-computer interaction system for emotion detection. Method: 217 students participated in this experiment. While three kinds of emotional stimuli were presented to participants, ANS responses(EDA, SKT, ECG, RESP, and PPG) as physiological signals were measured in twice first one for 60 seconds as the baseline and 60 to 90 seconds during emotional states. The obtained signals from the session of the baseline and of the emotional states were equally analyzed for 30 seconds. Participants rated their own feelings to emotional stimuli on emotional assessment scale after presentation of emotional stimuli. The emotion classification was analyzed by Linear Discriminant Analysis(LDA, SPSS 15.0), Support Vector Machine (SVM), and Multilayer perceptron(MLP) using difference value which subtracts baseline from emotional state. Results: The emotional stimuli had 96% validity and 5.8 point efficiency on average. There were significant differences of ANS responses among three emotions by statistical analysis. The result of LDA showed that an accuracy of classification in three different emotions was 83.4%. And an accuracy of three emotions classification by SVM was 75.5% and 55.6% by MLP. Conclusion: This study confirmed that the three emotions can be better classified by LDA using various physiological features than SVM and MLP. Further study may need to get this result to get more stability and reliability, as comparing with the accuracy of emotions classification by using other algorithms. Application: This could help get better chances to recognize various human emotions by using physiological signals as well as be applied on human-computer interaction system for recognizing human emotions.

Classification ofWarm Temperate Vegetations and GIS-based Forest Management System

  • Cho, Sung-Min
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.216-224
    • /
    • 2021
  • Aim of this research was to classify forest types at Wando in Jeonnam Province and develop warm temperate forest management system with application of Remote Sensing and GIS. Another emphasis was given to the analysis of satellite images to compare forest type changes over 10 year periods from 2009 to 2019. We have accomplished this study by using ArcGIS Pro and ENVI. For this research, Landsat satellite images were obtained by means of terrestrial, airborne and satellite imagery. Based on the field survey data, all land uses and forest types were divided into 5 forest classes; Evergreen broad-leaved forest, Evergreen Coniferous forest, Deciduous broad-leaved forest, Mixed fores, and others. Supervised classification was carried out with a random forest classifier based on manually collected training polygons in ROI. Accuracy assessment of the different forest types and land-cover classifications was calculated based on the reference polygons. Comparison of forest changes over 10 year periods resulted in different vegetation biomass volumes, producing the loss of deciduous forests in 2019 probably due to the expansion of residential areas and rapid deforestation.