DOI QR코드

DOI QR Code

The Classification Algorithm of Users' Emotion Using Brain-Wave

뇌파를 활용한 사용자의 감정 분류 알고리즘

  • 이현주 (세종대학교 컴퓨터공학과 멀티미디어 인터넷 연구실) ;
  • 신동일 (세종대학교 컴퓨터공학과 멀티미디어 인터넷 연구실) ;
  • 신동규 (세종대학교 컴퓨터공학과 멀티미디어 인터넷 연구실)
  • Received : 2013.08.31
  • Accepted : 2014.02.06
  • Published : 2014.02.28

Abstract

In this study, emotion-classification gathered from users was performed, classification-experiments were then conducted using SVM(Support Vector Machine) and K-means algorithm. Total 15 numbers of channels; CP6, Cz, FC2, T7. PO4, AF3, CP1, CP2, C3, F3, FC6, C4, Oz, T8 and F8 among 32 members of the channels measured were adapted in Brain signals which indicated obvious the classification of emotions in previous researches. To extract emotion, watching DVD and IAPS(International Affective Picture System) which is a way to stimulate with photos were applied and SAM(Self-Assessment Manikin) was used in emotion-classification to users' emotional conditions. The collected users' Brain-wave signals gathered had been pre-processing using FIR filter and artifacts(eye-blink) were then deleted by ICA(independence component Analysis) using. The data pre-processing were conveyed into frequency analysis for feature extraction through FFT. At last, the experiment was conducted suing classification algorithm; Although, K-means extracted 70% of results, SVM showed better accuracy which extracted 71.85% of results. Then, the results of previous researches adapted SVM were comparatively analyzed.

본 연구에서는 사용자에게서 취득한 뇌파의 감정분류를 시행하였고, SVM(Support Vector Machine)과 K-means 알고리즘으로 분류실험을 하였다. 뇌파 신호는 측정 한 32개의 채널 중에서, 이전 연구에서 감정분류가 뚜렷하게 나타났던 CP6, Cz, FC2, T7, PO4, AF3, CP1, CP2, C3, F3, FC6, C4, Oz, T8, F8의 총 15개의 채널을 사용하였다. 감정유도는 DVD 시청과 IAPS(International Affective Picture System)라는 사진 자극 방법을 사용하였고, 감정분류는 SAM(Self-Assessment Manikin) 방법을 사용하여 사용자의 감정상태를 파악하였다. 취득된 사용자의 뇌파신호는 FIR filter를 사용하여 전처리를 하였고, ICA(Independence Component Analysis)를 사용하여 인공산물(eye-blink)을 제거하였다. 전처리된 데이터를 FFT를 통하여 주파수 분석을 하여 특징추출(feature extraction) 하였다. 마지막으로 분류알고리즘을 사용하여 실험을 하였는데, K-means는 70%의 결과를 도출하였고, SVM은 71.85%의 결과를 도출하여 정확도가 더 우수하였으며, 이전의 SVM을 사용했던 연구결과와 비교분석하였다.

Keywords

References

  1. D. H. Kim and K. S. Hwang, "Development and verification of digital EEG signal transmission protocol," J. KICS, vol. 38C, no. 7, pp. 623-629, 2013. https://doi.org/10.7840/kics.2013.38C.7.623
  2. A. T. Sohaib, S. Qureshi, J. Hagelback, O. Hilborn, and P. Jercic, "Evaluating classifiers for emotion recognition using EEG," Foundations of Augmented Cognition Lecture Notes in Computer Science, vol. 8027, pp. 492-501, 2013.
  3. K. Takahashi, "Remarks on SVM-based on emotion recognition from multi-modal bio-potential signals," in Proc. 2004 IEEE Int'l Workshop on Robot and Human Interactive Communication, pp. 95-100, Sept. 2004.
  4. D. Nie, X. W. Wang, L. C. Shi, and B. L. Lu, "EEG-based emotion recognition during watching movies," IEEE EMBS Conf. Neural Engineering, pp. 667-670, 2011.
  5. C. H. Lee, J. W. Kwon, G. D. Kim, K. E. Hong, D. S. Shin, and D. H. Lee, "A study on EEG based concentration transmission and brain computer interface application," J. IEEK, pp. 41-46, Mar. 2009.
  6. D. O. Bos, "EEG-based emotion recognition," The Influence of Visual and Auditory Stimuli, pp. 1-17, 2006.
  7. H. J. Lee, D. I. Shin, and D. K. Shin, "Design of the system for human concentration exploiting digital contents," J. Korea Game Society, pp. 321-324, 2012.
  8. EEGLAB, Retrieved Nov. 30, 2013. from http:// sccn.ucsd.edu/eeglab/
  9. S. Koelstra, C. Muhl, M. Soleymani, J. S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, and I. Patras, "DEAP: A database for emotion analysis using physiological signals," IEEE Trans. Affective Computing, pp. 18-31, 2012.
  10. A. Delorme, and S. Makeig, "EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis," J. Neuroscience Methods, vol. 134, no. 15, pp. 9-21, Mar. 2004. https://doi.org/10.1016/j.jneumeth.2003.10.009
  11. J. H. Choi, J. H. Hong, M. Y. Kwon, S. D. Park, T. J. Park, and S. C. Jun, "Physical characteristic analysis of IAPS for emotional processing EEG study," HCI, pp. 741-744, 2013.
  12. H. G. Yeom, C. H. Han, H. D. Kim, and K. B. Sim, "Human emotion recognition using power spectrum of EEG signals: Application of bayesian networks and relative power values," KIIS, vol. 18, no. 2, pp. 251-256, 2008. https://doi.org/10.5391/JKIIS.2008.18.2.251
  13. S. K. Yoo, C. K. Lee, Y. J. Park, N. H. Kim, B. C. Lee, and K. S. Jeong, "Neural network based emotion estimation using heart rate variability and skin resistance," Advances in Natural Computation Lecture Notes in Computer Science, pp. 818-824, 2005.
  14. H. D. Kim, and K. B. Sim, "Human networks recognition method using EEG signals by bayesian networks," KIIS, vol. 18, no. 1, 2008.
  15. M. Eimer, "An event-related potential (ERP) study of transient and sustained visual attention to color and form," J. Biol. Psychol., vol. 44, no. 3, pp. 143-160, Jan. 1997. https://doi.org/10.1016/S0301-0511(96)05217-9
  16. A. Holmes, J. S. Winston, and M. Eimer, "The role of spatial frequency information for ERP components sensitive to faces and emotional facial expression," J. Cognitive Brain Research, vol. 25, no. 2, pp. 508-520, Oct. 2005. https://doi.org/10.1016/j.cogbrainres.2005.08.003
  17. R. O. Duda, P. E. Hart, and D, G, Stork, Pattern classification, Wiley-Interscience, 2000.
  18. S. J. Nam, "Research on information processing and classification system the clinical data," M.S. Thesis, The graduate school of Sejong University, 2010.
  19. T. Saramaki, Finite impulse response filter design, John Wiley & Sons, pp. 155-270, 1993.
  20. C. A. Frantzidis, C. Bratsas, M. A. Klados, E. Konstantinidis, C. D. Lithari, A. B. Vivas, C. L. Papadelis, E. Kaldoudi, C. Pappas, and P. D. Bamidis, "On the classification of emotional biosignals evoked while viewing affective pictures: An integrated data-miningbased approach for healthcare applications," IEEE Trans. Inform. technol. in biomedicine, vol. 14, no. 2, pp. 309-317, 2010. https://doi.org/10.1109/TITB.2009.2038481
  21. R. N. Vigario, "Extraction of ocular artifacts from EEG using independent comonent analysis," Electroencephalography and clinical Neurophysiology, vol. 103, no. 3, pp. 395-404, Sept. 1997. https://doi.org/10.1016/S0013-4694(97)00042-8
  22. WEKA, Retrieved Dec. 30, 2013. from http://www.cs.waikato.ac.nz/ml/weka/

Cited by

  1. P-112: Sound Quality Improvement of a Flat-Panel Display Front Speaker: Emotional and EEG Test of Exciter Speaker vol.48, pp.1, 2017, https://doi.org/10.1002/sdtp.11979